Hacking the PS4, part 1

Introduction to PS4's security, and userland ROP

Note: This article is part of a 3 part series:

¢ Hacking the PS4, part 1 - Introduction to PS4's security, and userland ROP
¢ Hacking the PS4, part 2 - Userland code execution
e Hacking the PS4, part 3 - Kernel exploitation

See also: Analysis of sys_dynlib prepare dlclose PS4 kernel heap overflow

Introduction

Since there haven't been any major public announcements regarding PS4 hacking for a long
time now, | wanted to explain a bit about how far PS4 hacking has come, and what is
preventing further progression.

| will explain some security concepts that generally apply to all modern systems, and the
discoveries that | have made from running ROP tests on my PS4.

The goal of this series will be to present a full chain of exploits to ultimately gain kernel code
execution on the PS4 by just visiting a web page on the Internet Browser.

If you are not particularly familiar with exploitation, you should read my article about exploiting
DS games through stack smash vulnerabilities in save files first.

You may download my complete setup here to run these tests yourself; it is currently for
firmware 1.76 only. If you are on an older firmware and wish to update to 1.76, you may
download the 1.76 PUP file and update via USB.

Background information about the PS4

As you probably know the PS4 features a custom AMD x86-64 CPU (8 cores), and there
are loads of research available for this CPU architecture, even if this specific version might
deviate slightly from known standards. For example, PFLA (Page Fault Liberation Army)
released a proof of concept implementing a complete Turing machine using only page faults
and the x86 MMU during the 29C3 congress, check their awesome video over at YouTube.
Also interesting if you are trying to run code within a virtual machine and want to execute
instructions on the host CPU.

- EurAsia news article 3251

As well as having a well documented CPU architecture, much of the software used in the PS4
iS open source.

Most notably, the PS4's Orbis OS is based on FreeBSD (9.0), just like the PS3's OS was (with
parts of NetBSD as well); and includes a wide variety of additional open source software as
well, such as Mono VM, and WebKit.

WebKit entry point

WebKit is the open source layout engine which renders web pages in the browsers for iOS, Wii


http://www.eurasia.nu/modules.php?name=News&file=article&sid=3251&mode=&order=0&thold=0
https://cturt.github.io/ps4.html
https://cturt.github.io/ps4-2.html
https://cturt.github.io/ps4-3.html
https://cturt.github.io/dlclose-overflow.html
https://cturt.github.io/DS-exploit-finding.html
https://github.com/CTurt/PS4-playground
http://www.psdevwiki.com/ps4/1.760.000
https://www.playstation.com/en-us/support/system-updates/ps4/
https://en.wikipedia.org/wiki/PlayStation_4_system_software
http://www.scei.co.jp/ps4-license/
http://www.mono-project.com/docs/advanced/runtime/
https://www.webkit.org/

U, 3DS, PS Vita, and the PS4.

Although so widely used and mature, WebKit does have its share of vulnerabilities; you can
learn about many of them by reading Pwn20wn write-ups.

In particular, the browser in PS4 firmware 1.76 uses a version of WebKit which is vulnerable to
CVE-2012-3748, a heap-based buffer overflow in the gsarray::sort(...) method.

In 2014 nas and Proxima announced that they had successfully been able to port an exploit
using this vulnerability, originally written for Mac OS X Safari, to the PS4's internet browser,
and released the PoC code publicly as the first entry point into hacking the PS4.

This gives us arbitrary read and write access to everything the WebKit process can read and
write to, which can be used to dump modules, and overwrite return addresses on the stack,
letting us control the instruction pointer register (rip) to achieve ROP execution.

Since then, many other vulnerabilities have been found in WebKit, which could probably be
used as an entry point for later firmwares of the PS4, but as of writing, no one has ported any
of these exploits to the PS4 publicly.

If you have never signed into PSN, your PS4 won't be able to open the Internet Browser,
however you can go to "Settings", and then "User's Guide" to open a limited web browser view
which you can control the contents of with a proxy.

What is ROP?

Unlike in primitive devices like the DS, the PS4 has a kernel which controls the properties of
different areas of memory. Pages of memory which are marked as executable cannot be
overwritten, and pages of memory which are marked as writable cannot be executed; this is
known as Data Execution Prevention (DEP).

This means that we can't just copy a payload into memory and execute it. However, we can
execute code that is already loaded into memory and marked as executable.

It wouldn't be very useful to jump to a single address if we can't write our own code to that
address, so we use ROP.

Return-Oriented Programming (ROP) is just an extension to traditional stack smashing, but
instead of overwriting only a single value which rip will jump to, we can chain together many
different addresses, known as gadgets.

A gadget is usually just a single desired instruction followed by a ret.

In x86_64 assembly, when a ret instruction is reached, a 64 bit value is popped off the stack
and rip jumps to it; since we can control the stack, we can make every ret instruction jump to
the next desired gadget.

For example, from 0x80000 may contains instructions:

mov rax, 0

ret

And from 0x90000 may contain instructions:

mov rbx, O

ret


https://en.wikipedia.org/wiki/Pwn2Own#Summary_of_successful_exploits
https://www.exploit-db.com/exploits/28081/
http://wololo.net/talk/viewtopic.php?p=368577
http://webkitgtk.org/security/WSA-2016-0002.html
http://webkitgtk.org/security/WSA-2016-0003.html
https://cturt.github.io/DS-exploit-finding.html
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Return-oriented_programming

If we overwrite a return address on the stack to contain oxgoooo followed by 0x90000, then as
soon as the first ret instruction is reached execution will jump to mov rax, 0, and immediately
afterwards, the next ret instruction will pop o0x90000 off the stack and jump to mov rbx, o.

Effectively this chain will set both rax and rbx to 0, just as if we had written the code into a
single location and executed it from there.

ROP chains aren't just limited to a list of addresses though; assuming that from oxa0000
contains these instructions:

pop rax

ret

We can set the first item in the chain to 0xa0000 and the next item to any desired value for rax.

Gadgets also don't have to end in a ret instruction; we can use gadgets ending in a jmp:

add rax, 8
jmp rcx

By making rcx point to a ret instruction, the chain will continue as normal:

chain.add("pop rcx", "ret");
chain.add("add rax, 8; jmp rcx");

Sometimes you won't be able to find the exact gadget that you need on its own, but with other
instructions after it. For example, if you want to set rs to something, but only have this gadget,
you will have to set r9 to some dummy value:

Although you may have to be creative with how you write ROP chains, it is generally accepted
that within a sufficiently large enough code dump, there will be enough gadgets for Turing-
complete functionality; this makes ROP a viable method of defeating DEP.

Finding gadgets

Think of ROP as writing a new chapter to a book, using only words that have appeared at the
end of sentences in the previous chapters.

It's obvious from the structure of most sentences that we probably won't be able to find words
like 'and' or 'but' appearing at the end of any sentences, but we will need these connectives in
order to write anything meaningful.


https://en.wikipedia.org/wiki/Turing_completeness

It is quite possible however, that a sentence has ended with 'sand'. Although the author only
ever intended for the word to be read from the 's', if we start reading from the 'a’, it will appear
as an entirely different word by coincidence, 'and'.

These principles also apply to ROP.

Since almost all functions are structured with a prologue and epilogue:

; Save registers
push rbp
mov rbp, rsp
push rl5
push rl4
push ri3
push rl2
push rbx
sub rsp, 18h

; Function body

; Restore registers
add rsp, 18h
pop rbx

pop rl2

pop ri3

pop rl4

pop ()

pop rbp

ret

You'd expect to only be able to find pop gadgets, or more rarely, something like xor rax, raxto
set the return value to 0 before returning.

Having a comparison like:

cmp [rax], rl2

ret

Wouldn't make any sense since the result of the comparison isn't used by the function.
However, there is still a possibility that we can find gadgets like these.

x86_64 instructions are similar to words in that they have variable lengths, and can mean
something entirely different depending on where decoding starts.

The x86_64 architecture is a variable-length CISC instruction set. Return-oriented
programming on the x86_64 takes advantage of the fact that the instruction set is very
"dense", that is, any random sequence of bytes is likely to be interpretable as some valid
set of x86_64 instructions.



- Wikipedia

To demonstrate this, take a look at the end of this function from the WebKit module:

000000000052BEGD eax, [rdx+8]
000000000052BE10 [rsi+10h], eax

000000000052BE13 byte ptr [rsi+39h], 20h
000000000052BE17

Now take a look at what the code looks like if we start decoding from ox52be14:

000000000052BE14

000000000052BE17

Even though this code was never intended to be executed, it is within an area of memory which
has been marked as executable, so it is perfectly valid to use as a gadget.

Of course, it would be incredibily time consuming to look at every possible way of interpreting
code before every single ret instruction manually; and that's why tools exist to do this for you.
The one which | use to search for ROP gadgets is rp++; to generate a text file filled with
gadgets, just use:

rp-win-x64 -f modl4.bin --raw=x64 --rop=1 --unique > modl4.txt

General protection faults

If we do perform an access violation, such as by trying to execute a non-executable page of
memory, or by trying to write to a non-writable page of memory, a general protection fault, or
more specifically in this instance, a segmentation fault, will occur.

For example, trying to execute code on the stack, which is mapped as read and write only:

setU8to(chain.data + @, Oxeb);
setU8to(chain.data + 1, Oxfe);

chain.add(chain.data);

And trying to write to code, which is mapped as read and execute only:

setU8to(moduleBases[webkit], 0);

If a general protection fault occurs, a message saying "There is not enough free system
memory" will appear, and the page will fail to load:


https://en.wikipedia.org/wiki/Return-oriented_programming
https://github.com/0vercl0k/rp/
https://en.wikipedia.org/wiki/Segmentation_fault

This message will also be displayed for other hard faults, such as division by 0, or execution of
an invalid instruction or unimplemented system call, but most commonly it will be encountered
by performing a segmentation fault.

ASLR

Address Space Layout Randomization (ASLR) is a security technique which causes the base
addresses of modules to be different every time you start the PS4.

It has been reported to me that very old firmwares (1.05) don't have ASLR enabled, but it was
introduced sometime before firmware 1.70. Note that kernel ASLR is not enabled (for
firmwares 1.76 and lower at least), which will be proved later in the article.

For most exploits ASLR would be a problem because if you don't know the addresses of the
gadgets in memory, you would have no idea what to write to the stack.

Luckily for us, we aren't limited to just writing static ROP chains. We can use JavaScript to read
the modules table, which will tell us the base addresses of all loaded modules. Using these
bases, we can then calculate the addresses of all our gadgets before we trigger ROP
execution, defeating ASLR.

The modules table also includes the filenames of the modules:

e WebProcess.self

¢ libkernel.sprx

¢ libSceLibclnternal.sprx
¢ libSceSysmodule.sprx
¢ libSceNet.sprx

¢ libSceNetCtl.sprx

¢ libScelpmi.sprx

¢ libSceMbus.sprx

¢ libSceRegMgr.sprx

¢ libSceRtc.sprx

¢ libScePad.sprx

¢ libSceVideoOut.sprx

¢ libScePigletv2VSH.sprx
¢ libSceOrbisCompat.sprx
¢ libSceWebKit2.sprx


https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.youtube.com/watch?v=aEu208625XA

¢ libSceSysCore.sprx

o libSceSsl.sprx

¢ libSceVideoCoreServerlnterface.sprx
» libSceSystemService.sprx

¢ libSceCompositeExt.sprx

Although the PS4 predominantly uses the [Signed] PPU Relocatable Executable ([S]PRX)
format for modules, some string references to [Signed] Executable and Linking Format
([SIELF) object files can also be found in the 1ibscesysmodule.sprx dump, such as bdj.elf,
web_core.elf and orbis-jsc-compiler.self. This combination of modules and objects is
similar to what is used in the PSP and PS3.

You can view a complete list of all modules available (not just those loaded by the browser) in
libscesysmodule.sprx. WWe can load and dump some of these through several of Sony's
custom system calls, which will be explained later in this article.

JuSt-ROP

Using JavaScript to write and execute dynamic ROP chains gives us a tremendous advantage
over a traditional, static buffer overflow attack.

As well as being necessary to defeat ASLR, JavaScript also lets us read the user agent of the
browser, and provide different ROP chains for different browser versions, giving our exploit a
greater range of compatibility.

We can even use JavaScript to read the memory at our gadgets' addresses to check that they
are correct, giving us almost perfect reliability. Theoretically, you could take this even further by
writing a script to dynamically find ROP gadgets and then build ROP chains on the fly.

Writing ROP chains dynamically, rather than generating them with a script beforehand, just
makes sense.

| created a JavaScript framework for writing ROP chains, JuSt-ROP, for this very reason.

JavaScript caveats

JavaScript represents numbers using the IEEE-754 double-precision (64 bit) format. This
provides us with 53 bit precision, meaning that it isn't possible to represent every 64 bit value,
approximations will have to be used for some.

If you just need to set a 64 bit value to something low, like 256, then setué64to will be fine.

But for situations in which you need to write a buffer or struct of data, there is the possibility
that certain bytes will be written incorrectly if it has been written in 64 bit chunks.

Instead, you should write data in 32 bit chunks (remembering that the PS4 is little endian), to
ensure that every byte is exact.

System calls

Interestingly, the PS4 uses the same calling convention as Linux and MS-DOS for system calls,
with arguments stored in registers, rather than the traditional UNIX way (which FreeBSD uses
by default), with arguments stored in the stack:

e rax - System call number
e rdi - Argument 1


http://www.psdevwiki.com/ps4/Libraries
https://github.com/CTurt/JuSt-ROP
https://en.wikipedia.org/wiki/IEEE_floating_point
https://www.freebsd.org/doc/en/books/developers-handbook/x86-system-calls.html#x86-alternate-calling-convention

e rsi- Argument 2
e rdx - Argument 3
e ri10 - Argument 4
e rg - Argument 5
e r9 - Argument 6

We can try to perform any system call with the following JuSt-ROP method:

this.syscall = function(name, systemCallNumber, argl, arg2, arg3,
console.log("syscall " + name);

this.add("pop rax", systemCallNumber);
i1f(typeof(argl) ! "undefined") this.
i1f(typeof(arg2) ! "undefined") this.
if(typeof(arg3) ! "undefined") this.
if(typeof(argd) ! "undefined") this.
if(typeof(arg5) ! "undefined") this.
if(typeof(arg6) ! "undefined") this.
this.add("mov rl@, rcx; syscall");

Just make sure to set the stack base to some free memory beforehand:

this.add("pop rbp", stackBase + returnAddress + 0x1400);

Using system calls can tell us a huge amount about the PS4 kernel. Not only that, but using
system calls is most likely the only way that we can interact with the kernel, and thus potentially
trigger a kernel exploit.

If you are reverse engineering modules to identify some of Sony's custom system calls, you
may come across an alternative calling convention:

Sometimes Sony performs system calls through regular system call 0 (which usually does
nothing in FreeBSD), with the first argument (rdi) controlling which system call should be
executed:

® rax - 0

e rdi - System call number
e rsi-Argument 1

e rdx - Argument 2

e r10 - Argument 3

e rg - Argument 4

e r9 - Argument 5

It is likely that Sony did this to have easy compatibility with the function calling convention. For
example:

.global syscall

syscall:



xor rax, rax
mov rl@, rcx

syscall
ret

Using this, they can perform system calls from C using the function calling convention:

int syscall();

int getpid(void) {
return syscall(20);

When writing ROP chains, we can use either convention:

// Both will get the current process ID:

chain.syscall("getpid", 20);
chain.syscall("getpid", 0, 20);

It's good to be aware of this, because we can use whichever one is more convenient for the
gadgets that are available.

getpid
Just by using system call 20, getpid(void), we can learn a lot about the kernel.

The very fact that this system call works at all tells us that Sony didn't bother mixing up the
system call numbers as a means of security through obscurity (under the BSD license they
could have done this without releasing the new system call numbers).

So, we automatically have a list of system calls in the PS4 kernel to try.

Secondly, by calling getpid(), restarting the browser, and calling it again, we get a return value
2 higher than the previous value.

This tells us that the Internet Browser app actually consists of 2 separate processes: the
WebKit core (which we take over), that handles parsing HTML and CSS, decoding images, and
executing JavaScript for example, and another one to handle everything else: displaying
graphics, receiving controller input, managing history and bookmarks, etc.

Also, although FreeBSD has supported PID randomisation since 4.0, sequential PID allocation
is the default behaviour.

The fact that PID allocation is set to the default behaviour indicates that Sony likely didn't

bother adding any additional security enhancements such as those encouraged by projects like
HardenedBSD, other than userland ASLR.

How many custom system calls are there?


http://www.freebsd.org/cgi/man.cgi?query=getpid&sektion=2
https://en.wikipedia.org/wiki/Security_through_obscurity
http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9
http://security.stackexchange.com/questions/88692/do-randomized-pid-bring-more-security
https://hardenedbsd.org/
http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L952

The last standard FreeBSD 9 system call is wait6, number 532; anything higher than this must
be a custom Sony system call.

Invoking most of Sony's custom system calls without the correct arguments will return error
0x16, "Invalid argument"; however, any compatibility or unimplemented system calls will report
the "There is not enough free system memory" error.

Through trial and error, | have found that system call number 617 is the last Sony system call,
anything higher is unimplemented.

From this, we can conclude that there are 85 custom Sony system calls in the PS4's kernel
(617 - 532).

libkernel.sprx

To identify how custom system calls are used by libkernel, you must first remember that it is
just a modification of the standard FreeBSD 9.0 libraries.

Here's an extract of 1ibpthread init from thr_init.c:

/*
* Check for the special case of this process running as
* or in place of init as pid = 1:
)
if ((_thr_pid = getpid()) == 1) {
/*
* Setup a new session for this process which is
* assumed to be running as root.
)
if (setsid() == -1)
PANIC("Can't set session ID");
1f (revoke(_PATH_CONSOLE) != 0)
PANIC("Can't revoke console");
1f ((fd = __sys_open(_PATH_CONSOLE, O_RDWR)) < 0)
PANIC("Can't open console");
1f (setlogin("root") == -1)
PANIC("Can't set login to root");
1f (_ioctl(fd, TIOCSCTTY, (char *) NULL) == -1)
PANIC("Can't set controlling terminal");

The same function can be found at offset 0x215r0 from 1ibkernel.sprx. This is how the above
extract looks from within a libkernel dump:

getpid
cs:dword_5B638, eax

eax, 1
short loc_2169F



http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L952
https://github.com/freebsd/freebsd/blob/release/9.0.0/lib/libthr/thread/thr_init.c#L297

setsid
eax, QFFFFFFFFh
loc_21A0C

rdi, aDevConsole ; "/dev/console"
revoke

eax, eax

loc_21A24

rdi, aDevConsole ; "/dev/console"
esi, 2

al, al

open

rl4d, eax

rl4d, rl4d
loc_21A3C

rdi, aRoot
setlogin

eax, OFFFFFFFFh
loc_21A54

edi, rl4d

esi, 20007461h
edx, edx

al, al

ioctl

eax, OFFFFFFFFh
loc_21A6C

Reversing module dumps to analyse system calls

libkernel isn't completely open source though; there's also a lot of custom code which can help
disclose some of Sony's system calls.

Although this process will vary depending on the system call you are looking up; for some, it is
fairly easy to get a basic understanding of the arguments that are passed to it.

The system call wrapper will be declared somewhere in 1ibkernel.sprx, and will almost always
follow this template:

00000000POAADB70 syscall_601 proc near
000000000000DB70 mov rax, 259h
00000000000DB77 mov rl@, rcx
000000000000DB7A syscall
000000000000ADB7C jb short error




0000000000VADB7E
000000P00VADB7F
000000V0VV0VODB7F error:

000000000000DB7F lea rcx, sub_DF60
000000000000DB86 jmp rcx
000000000000DB86 syscall_601 endp

Note that the mov r10, rcx instruction doesn't necessarily mean that the system call takes at
least 4 arguments; all system call wrappers have it, even those that take no arguments, such
as getpid.

Once you've found the wrapper, you can look up xrefs to it:

0000000000011D50 edi, 10h
0000000000011D55 esi, esi
0000000000011D57 edx, 1
0000000000011D5C syscall_601
0000000000011D61 eax, eax
0000000000011D63 short loc_11D6A

It's good to look up several of these, just to make sure that the registers weren't modified for
something unrelated:

0000000000011A28 edi, 9
0000000000011A2D esi, esi
0000000000011A2F edx, edx
0000000000011A31 syscall_601
0000000000011A36 eax, eax
0000000000011A38 short loc_11A3F

Consistently, the first three registers of the system call convention (rdi, rsi, and rdx) are
modified before invoking the call, so we can conclude with reasonable confidence that it takes
3 arguments.

For clarity, this is how we would replicate the calls in JuSt-ROP:

chain.syscall("unknown", 601, 0x10, 0, 1);

chain.syscall("unknown", 601, 9, 0, 0);

As with most system calls, it will return 0 on success, as seen by the jz conditional after
testing the return value.

Looking up anything beyond than the amount of arguments will require a much more in-depth
analysis of the code before and after the call to understand the context, but this should help
you get started.



Brute forcing system calls

Although reverse engineering module dumps is the most reliable way to identify system calls,
some aren't referenced at all in the dumps we have so we will need to analyse them blindly.

If we guess that a certain system call might take a particular set of arguments, we can brute
force all system calls which return a certain value (o for success) with the arguments that we
chose, and ignore all which returned an error.

We can also pass Os for all arguments, and brute force all system calls which return useful
errors such as oxe, "Bad address", Which would indicate that they take at least one pointer.

Firstly, we will need to execute the ROP chain as soon as the page loads. We can do this by
attaching our function to the body element's onload:

<body onload="exploit()">

Next we will need to perform a specific system call depending on an HTTP GET value.
Although this can be done with JavaScript, | will demonstrate how to do this using PHP for
simplicity:

var Sony = 533;

chain.syscall("Sony system call", Sony + <?php print($_GET["b"]1); 7>
chain.write_rax_ToVariable(0);

Once the system call has executed, we can check the return value, and if it isn't interesting,
redirect the page to the next system call:

if(chain.getVariable(@) == 0x16) window.location.assign("index.php?b

Running the page with ?2b=0 appended to the end will start the brute force from the first Sony
system call.

Although this method requires a lot of experimentation, by passing different values to some of
the system calls found by brute forcing and analysing the new return values, there are a few
system calls which you should be able to partially identify.

System call 538

As an example, I'll take a look at system call 538, without relying on any module dumps.
These are the return values depending on what is passed as the first argument:

e 0-0x16, "Invalid argument"
e 1- Oxe, "Bad address"

o Pointer to Os - 0xé64 initially, but each time the page is refreshed this value increases by 1
Other potential arguments to try would be PID, thread ID, and file descriptor.

Although most system calls will return o0 on success, due to the nature of the return value

B 7T T B Y | R PR L T R | S = -



Increasing arer eacn ume It IS calleq, It Seems liKe IT IS allocatlng a resource numoer, sucn as a
file descriptor.

The next thing to do would be to look at the data before and after performing the system call, to
see if it has been written to.

Since there is no change in the data, we can assume that it is an input for now.

| then tried passing a long string as the first argument. You should always try this with every
input you find because there is the possibility of discovering a buffer overflow.

writeString(chain.data, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaad");

chain.syscall("unknown", 538, chain.data, @, 0, 0, 0, 0);

The return value for this is 0x3£, ENaMETOOLONG. Unfortunately it seems that this system call
correctly limits the name (32 bytes including nurr truncator), but it does tell us that it is
expecting a string, rather than a struct.

We now have a few possibilities for what this system call is doing, the most obvious being
something related to the filesystem (such as a custom mkdir or open), but this doesn't seem
particularly likely seeing as a resource was allocated even before we wrote any data to the
pointer.

To test whether the first parameter is a path, we can break it up with multiple / characters to
see if this allows for a longer string:

writeString(chain.data, "aaaaaaaaaa/aaaaaaaaaa/aaaaaaaaaa");

chain.syscall("unknown", 538, chain.data, 0, 0, 0, 0, 0);

Since this also returns o0x3£, we can assume that the first argument isn't a path; it is a name for
something that gets allocated a sequential identifier.

After analysing some more system calls, | found that the following all shared this exact same
behaviour:

e 533
e 538
e 557
e 574
e 580

From the information that we have so far, it is almost impossible to pinpoint exactly what these
system calls do, but as you run more tests, further information will slowly be revealed.

To save you some time, system call 538 is allocating an event flag (and it doesn't just take a
name).

Using general knowledge of how a kernel works, you can guess, and then verify, what the
system calls are allocating (semaphores, mutexes, etc).

Dumping additional modules

We can dump additional modules by following these stages:



e LoOad the module
e Get the module's base address
e Dump the module

I've extracted and posted a list of all module names on psdevwiki.

To load a module we will need to use the scesysmoduleLoadModule function from
libSceSysmodule.sprx + 0x1850. The first parameter is the module ID to load, and the other 3
should just be passed 0.

The following JuSt-ROP method can be used to perform a function call:

this.call = function(name, module, address, argl, arg2, arg3, arg4,
console.log("call " + name);

1f(typeof(argl) ! "undefined") this.add("pop 1 argl);
1f(typeof(arg2) ! "undefined") this.add("pop rsi arg);
1f(typeof(arg3) ! "undefined") this.add("pop arg3);
1f(typeof(argd) ! "undefined") this.add("pop rcx", arg4);
1f(typeof(arg5) ! "undefined") this.add("pop r8", arg5);
1f(typeof(argb) ! "undefined") this.add("pop r9", argb);
this.add(module_bases[module] + address);

So, to load 1ibsceavsetting.sprx (0xb):

chain.call("sceSysmoduleLoadModule", 1ibSysmodule, 0x1850, Oxb, @, 0

Unfortunately, a fault will be triggered when trying to load certain modules; this is because the
sceSysmoduleLoadModule function doesn't load dependencies, so you will need to manually load
them first.

Like most system calls, this should return o on success. To see the loaded module ID that was
allocated, we can use one of Sony's custom system calls, number 592, to get a list of currently
loaded modules:

var countAddress = chain.data;
var modulesAddress = chain.data + 8;

// System call 592, getLoadedModules(int *destinationModuleHandles,
chain.syscall("getLoadedModules", 592, modulesAddress, 256, countAdd

chain.execute(function() {
var count = getU64from(countAddress);
for(var index = @; index < count; index++) {
logAdd("Module handle: 0x" + getU32from(modulesAddress + 1inde



http://www.psdevwiki.com/ps4/Libraries#Libraries_on_firmware_1.76

Running this without loading any additional modules will produce the following list:

0x0, Ox1, Ox2, Oxc, Oxe, Oxf, Ox11l, Ox12, Ox13, 0x14, 0x15, 0x16, Ox

But if we run it after loading module oxb, we will see an additional entry, 0x65. Remember that
module ID is not the same as loaded module handle.

We can now use another of Sony's custom system calls, number 593, which takes a module
handle and a buffer, and fills the buffer with information about the loaded module, including its
base address. Since the next available handle is always 0x65, we can hardcode this value into
our chain, rather than having to store the result from the module list.

The buffer must start with the size of the struct that should be returned, otherwise error ox16
will be returned, "1nvalid argument":

setU64to(moduleInfoAddress, 0x160);
chain.syscall("getModuleInfo", 593, 0x65, moduleInfoAddress);

chain.execute(function() {
logAdd(hexDump(moduleInfoAddress, 0x160));

1)

It will return o upon success, and fill the buffer with a struct which can be read like so:

name = readString(moduleInfoAddress + 0x8);

codeBase = getU64from(moduleInfoAddress + 0x108);
codeSize = getU32from(moduleInfoAddress + 0x110);
dataBase = getU64from(moduleInfoAddress + 0x118);
dataSize = getU32from(moduleInfoAddress + 0x120);

We now have everything we need to dump the module!

dump(codeBase, codeSize + dataSize);

There is another Sony system call, number 608, which works in a similar way to 593, but
provides slightly different information about the loaded module:

setU64to(moduleInfoAddress, 0xl1la8);

chain.syscall("getDifferentModuleInfo", 608, 0x65, @, moduleInfoAddrsg
logAdd(ChexDump(moduleInfoAddress, 0x1a8));

It's not clear what this information is.



Browsing the filesystem

The PS4 uses the standard FreeBSD 9.0 system calls for reading files and directories.

However, whilst using read for some directories such as /dev/ will work, others, such as / will
fail.

I'm not sure why this is, but if we use getdents instead of read for directories, it will work much
more reliably:

writeString(chain.data, "/dev/");
chain.syscall("open", 5, chain.data, 0, 0);
chain.write_rax_ToVariable(@);

chain.read_rdi_FromVariable(0);
chain.syscall("getdents", 272, undefined, chain.data + 0x10, 1028);

This is the resultant memory:

0000010:
0000020
0000030
0000040
0000050
0000060 :
0000070
0000080
0000090 :
0000000 :
00000b0:
000000
00000d0
00000e0:
00000f0:
0000100
0000110:
0000120:
0000130:
0000140
0000150:
0000160
0000170:
0000180:
0000190




00001b0
00001c0:
00001d0o-
00001e0:
0000110
0000200
0000210
0000220
0000230
0000240
0000250 fication@...F...
0000260 ....notification
0000270
0000280
0000290
0000200
00002b0
00002c0:

You can read some of these devices, for example: reading /dev/urandom Will fill the memory
with random data.

It is also possible to parse this memory to create a clean list of entries; look at browser.html in
the repository for a complete file browser:

CTurt, SKFU, droogie

M piarS O (PlaySiation 4
L el

/user
Back

[DIR): . =
IDIR): ..

[DIR]: system

[DIR]): home

2ot = O

WEZICD B Sefdre un = OGO
BEAced rved PR e = i TR0

AESoel st intor sl Pate = CoflBedlac OO0
Leack Dase = Cx o Wi OO0 ‘
Faatr erh UL £IGE E0tAean cals B Wi M

aSearch or Enter URL ) Full Screen &2 | ZOO0m

o LAty ared cr ek, Koy

-nter Back



Unfortunately, due to sandboxing we don't have complete access to the file system. Trying to
read files and directories that do exist but are restricted will give you error 2, ENOENT, "No such
file or directory".

We do have access to a lot of interesting stuff though including encrypted save data, trophies,
and account information. | will go over more of the filesystem in my next article.

Sandboxing

As well as file related system calls failing for certain paths, there are other reasons for a system
call to fail.

ost commonly, a disallowed system call will just return error 1, EPERM, "Operation not
Most ly, a disallowed syst Il will just ret p
permitted"; such as trying to use ptrace, but other system calls may fail for different reasons:

Compatibilty system calls are disabled. If you are trying to call mmap for example, you must use
system call number 477, not 71 or 197; otherwise a segfault will be triggered.

Other system calls such as exit will also trigger a fault:

chain.syscall("exit", 1, 0);

Trying to create an SCTP socket will return error 0x2b, EPrROTONOSUPPORT, indicating that SCTP
sockets have been disabled in the PS4 kernel:

//1int socket(int domain, int type, int protocol);
//socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);
chain.syscall("socket", 97, 2, 1, 132);

And although calling mmap with PrRoT READ | PROT WRITE | PROT_EXEC Will return a valid pointer,
the pror_Exkc flag is ignored. Reading its protection will return 3 (RW), and any attempt to
execute the memory will trigger a segfault:

syscall("mmap", 477, @0, 409, 1 | 2 | 4, 409, -1, 0);
write_rax_ToVariable(@);
read_rdi_FromVariable(0);

add("pop rax", Oxfeeb);
add("mov [rdi], rax");
add("mov rax, rdi");
add("jmp rax");

The list of open source software used in the PS4 doesn't list any kind of sandboxing software
like Capsicum, so the PS4 must use either pure FreeBSD jails, or some kind of custom,
proprietary, sandboxing system (unlikely).

Jails


http://www.psdevwiki.com/ps4/Talk:Files_on_the_PS4
http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L851
http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L172
http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L379
http://www.scei.co.jp/ps4-license/
https://www.freebsd.org/cgi/man.cgi?query=capsicum
https://www.freebsd.org/doc/handbook/jails.html

We can prove the existence of FreeBSD jails being actively used in the PS4's kernel through
the auditon system call being impossible to execute within a jailed environment:

chain.syscall("auditon", 446, 0, 0, 0);

The first thing the auditon system call does is check jailed here, and if so, return exosys:

1f (jailed(td->td_ucred))
return (ENOSYS);

Otherwise the system call would most likely return eperm from the mac_system check auditon
here:

error = mac_system_check_auditon(td->td_ucred, uap->cmd);
if (Cerror)
return (error);

Or from the priv_check here:

error = priv_check(td, PRIV_AUDIT_CONTROL);
if (Cerror)
return (error);

The absolute furthest that the system call could reach would be immediately after the
priv_check, here, before returning exnvar due to the length argument being 0O:

1f (Cuap->length <= @) || (uap->length > sizeof(union auditon_udata)

return (EINVAL);

Since mac_system check auditon and priv_check Will never return exosys, having the jailed
check pass is the only way enosys could be returned.

When executing the chain, exosys /s returned (0x48).

This tells us that whatever sandbox system the PS4 uses is at least based on jails because the
jailed check passes.

FreeBSD 9.0 kernel exploits

Before trying to look for new vulnerabilities in the FreeBSD 9.0 kernel source code, we should
first check whether any of the kernel vulnerabilities already found could be used on the PS4.

We can immediately dismiss some of these for obvious reasons:

FaeaDOMN NN N A oacianimmn e | o JOS-NpN-] RGP DRy PRy R T e [T PR-D Ry [ T P R


https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/security/audit/audit_syscalls.c#L164
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/security/audit/audit_syscalls.c#L169
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/security/audit/audit_syscalls.c#L174
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/security/audit/audit_syscalls.c#L178
https://github.com/freebsd/freebsd/tree/release/9.0.0/sys/kern
https://www.exploit-db.com/platform/?p=freebsd
https://www.exploit-db.com/exploits/26368/

® rIeepoyV Y.U-Y. I ITndp/pudce - rrriviliege Cscdiduorll £XpIloiL - s woll L WOIK SITNce, ds
previously stated, we don't have access to the ptrace system call.

e FreeBSD 9.0 - Intel SYSRET Kernel Privilege Escalation Exploit - won't work because the
PS4 uses an AMD processor.

o FreeBSD Kernel - Multiple Vulnerabilities - maybe the first vulnerability will lead to
something, but the other 2 rely on SCTP sockets, which the PS4 kernel has disabled (as
previously stated).

However, there are some smaller vulnerabilites, which could lead to something:

getlogin

One vulnerability which looks easy to try is using the getlogin system call to leak a small
amount of kernel memory.

The getlogin system call is intended to copy the login name of the current session to userland
memory, however, due to a bug, the whole buffer is always copied, and not just the size of the

name string. This means that we can read some uninitialised data from the kernel, which might
be of some use.

Note that the system call (49) is actually int getlogin r(char *name, int len); and not char
*getlogin(void) ;.

So, let's try copying some kernel memory into an unused part of userland memory:

chain.syscall("getlogin", 49, chain.data, 17);

Unfortunately 17 bytes is the most data we can get, since:

Login names are limited to maxr.oGNaME (from <sys/param.h>) characters, currently 17
including null.

- FreeBSD Man Pages

After executing the chain, the return value was 0, which means that the system call worked! An
excellent start. Now let's take a look at the memory which we pointed to:

Before executing the chain:

00 00 00 00 00 00 00 00 00 00 V0 00 00 00 00 00

00

After executing the chain:

72 6f 6f 74 00 fe ff ff 08 62 61 82 ff ff ff ff
00

After decoding the first 4 bytes as ASCII:

root


https://www.freebsd.org/cgi/man.cgi?query=getlogin&sektion=2
https://www.exploit-db.com/exploits/26368/
https://www.exploit-db.com/exploits/28718/
https://www.exploit-db.com/exploits/35938/
http://www.cvedetails.com/vulnerability-list/vendor_id-6/product_id-7/version_id-118765/Freebsd-Freebsd-9.0.html
http://www.cvedetails.com/cve/CVE-2014-8476/
https://www.freebsd.org/cgi/man.cgi?query=getlogin&sektion=2

So the browser is executed as root! That was unexpected.

But more interestingly, the memory leaked looks like a pointer to something in the kernel, which
is always the same each time the chain is run; this is evidence to support Yifanlu's claims that
the PS4 has no Kernel ASLR!

Summary

From the information currently available, the PS4's kernel seems to be very similar to the stock
FreeBSD 9.0 kernel.

Importantly, the differences that are present appear to be from standard kernel configuration
changes (such as disabling SCTP sockets), rather than from modified code. Sony have also
added several of their own custom system calls to the kernel, but apart from this, the rest of the
kernel seems fairly untouched.

In this respect, I'm inclined to believe that the PS4 shares most of the same juicy vulnerabilities
as FreeBSD 9.0's kernel!

Unfortunately, most kernel exploits cannot be triggered from the WebKit entry point that we
currently have due to sandboxing constraints (likely to be just stock FreeBSD jails).

And with FreeBSD 10 being out, it's unlikely that anyone is stashing away any private exploits
for FreeBSD 9, so unless a new one is suddenly released, we're stuck with what is currently
available.

The best approach from here seems to be reverse engineering all of the modules which can be
dumped, in order to document as many of Sony's custom system calls as possible; | have a
hunch that we will have more luck targeting these, than the standard FreeBSD system calls.

Recently Jaicrab has discovered two UART ports on the PS4 which shows us that there are
hardware hackers interested in the PS4. Although the role of hardware hackers has
traditionally been to dump the RAM of a system, like with the DSi, which we can already do
thanks to the WebKit exploit, there's also the possibility of a hardware triggered kernel
vulnerability being found, like geohot's original PS3 hypervisor hack. It remains most likely that
a kernel exploit will be found on the PS4 through system call vulnerabilities though.

Thanks

o flatz

e SKFU
e droogie
o Xerpi

¢ bigboss
e Hunger
o Takezo
e Proxima


https://twitter.com/yifanlu/status/551498289284009984
https://www.freebsd.org/doc/handbook/kernelconfig-custom-kernel.html
http://hackinformer.com/2015/06/24/breaking-news-discovered-two-communication-ports-uart-playstation-4/
http://farm4.static.flickr.com/3441/3869187499_da1665050d.jpg
http://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/

