Hacking the PS4, part 2

Userland code execution

Note: This article is part of a 3 part series:

e Hacking the PS4, part 1 - Introduction to PS4's security, and userland ROP
o Hacking the PS4, part 2 - Userland code execution
e Hacking the PS4, part 3 - Kernel exploitation

See also: Analysis of sys_dynlib prepare dlclose PS4 kernel heap overflow

Introduction

Since my first article on the PS4's security, | have made some new discoveries, aided by the
fact that | now have code execution within the WebKit process.

Whilst | don't want to release my code execution solution yet, | have made my PS4-SDK open
source, and will try to explain everything | have managed to do with it.

This article is less focused on exploitation, and more on what is possible with userland code
execution under the WebKit process.

Update

After gaining kernel code execution, I've gone back to this article to update some of the
uncertainties | had whilst researching with just userland code execution.

I've also since posted the method for gaining userland code execution, along with a ROP chain
to load binaries sent over TCP; it is explained in part 3 of this series.

Code execution

As explained in my previous article, ROP is just executing existing code loaded in memory in a
smart way; whilst ROP can technically be Turing-complete, it really isn't practical for anything
more complex than some basic tests.

With the help of flatz, I've been able to leverage ROP to setup memory in such a way that | can
write my own code into it, and execute it.

Simply, this means that | can compile C code, such as these examples included in PS4-SDK,
and execute them as native x86_64 code.

Whilst this is big progress, we are still running within the Internet Browser, and have the same
restrictions as before (like sandboxing).

As a little side note; with the recent release of LLVM 3.7, if we specify -target x86 64-scei-ps4
to c1ang, we can compile code with the exact same options that Sony uses to compile official
code for the PS4.

WebKit process limitations

As stated in mv nrevious article. the Internet Browser actuallv consists of 2 senarate


https://cturt.github.io/ps4.html
https://cturt.github.io/ps4-2.html
https://cturt.github.io/ps4-3.html
https://cturt.github.io/dlclose-overflow.html
https://cturt.github.io/ps4.html
https://github.com/CTurt/PS4-SDK
https://cturt.github.io/ps4-3.html#code-execution
https://en.wikipedia.org/wiki/Turing_completeness
https://github.com/CTurt/PS4-SDK/tree/master/examples
http://llvm.org/releases/download.html

TToT TR T ot Jo P T T T T T T TTTT T T v T T oThE s T TTrrTrYTYYTSY T T, T Trr T Tt

processes The one which we huack for Code execution is the core WebKit process (which
handles parsing HTML and CSS, decoding images, and executing JavaScript for example).

We can use the following code to dump all memory which our process has access to:

struct memoryRegionInfo info;
struct otherMemoryRegionInfo otherInfo;

void *m = NULL;

int 1;

// Iterate over first 107 memory mappings
for(i = 0; 1 < 107; i++) {

// Find base of next mapping
getOtherMemoryInfo(m, 1, &otherInfo);

// Get more info about this mapping
getMemoryInfo(otherInfo.base, &info);

// If readable, dump it
1f(info.flags & PROT_CPU_READ) {
sceNetSend(sock, info.base, info.end - info.base, 0);

Within this dump, you won't be able to find strings used by the other process, such as
"Options", "Close Window", "Refresh", or "There is not enough free system memory".

Graphics

One of the main implications of this is clear: if the other process handles displaying graphics,
we can't easily hijack the active 1ibscevideoout handle.

I've been working with xerpi to try to reinitialise 1ibscevideoout, but even though all functions
are returning good values, we can't get the screen to change from the browser view.

Just to be certain that our process can't access any existing video handles created by the other
process, we tried brute forcing all positive integers to see if any were valid.

Brute forcing with code execution

Brute forcing things with the ROP framework was very impractical. | relied on redirecting the
page after each test, and since the exploit isn't 100% reliable, the brute forcer would get stuck
after left for just a minute or so.

Atk vAAl AAAA AviAATib AN wirA AAanm tmr dA himiibA FArAaAn mmnAavrAa ArnahitiAniA HthinnAaa AliAlh AAa A VA AA


https://github.com/xerpi

VVILII IEdl CLLOUC CACUULIVIIL, wE Ldll Lly W VIULE 1VICEe T11IVIe dilivituuus LIIIIIgb, SUUIIl d>S d VIucu
handle that the Internet Browser has opened. And we can use sockets to track the progress
remotely from a PC.

scevideooutWaitVvblank Will return an error if it is given an invalid handle, and 0 if it's given a
valid handle:

int 1;

for(i = 0; 1 < Ox7FFFFFFF; 1i++) {
1f(!sceVideoOutWaitVblank(i)) return 1i;
if(1i % 0x10000 == @) debug(sock, "At %08x\n", 1i);

sceNetSocket(Close(sock);

return 0;

After running this for several hours it returned 0, confirming that our process has no access to
the other process' video handle.

Canvas

There is a partial solution to this though. If we create an HTMLS canvas and fill it with a single
colour, we can find the address of its framebuffer in RAM, and create a new thread to render to
it from native code, leaving the original thread to update the canvas as normal.

I've added an example of this to the PS4-SDK.

If the canvas has too high of a resolution, it is harder to locate its address, and will often have a
poor refresh rate. However, we can stretch a low resolution image to be fullscreen, and it will
work fine:

var body = document.getElementsByTagName("body")[@];

// Create canvas
var canvas = document.createElement("canvas");

canvas.id = "canvas";

canvas.width = 160;

canvas.height = 144;
canvas.style.zIndex = 1;
canvas.style.position = "absolute";
canvas.style.border = "1px solid";

// Centered
//canvas.style.left = ((window.screen.width - canvas.width) / 2).toSt
//canvas.style.top = ((window.screen.height - canvas.height) / 2).to



https://github.com/CTurt/PS4-SDK/blob/master/examples/canvas/source/main.c

canvas.style.left = "Qpx";
canvas.style.top = "Qpx";
canvas.style.width = "100%";

canvas.style.height = "100%";

body . appendChild(canvas);

Another thing you may want to do is remove all other elements before creating the canvas, as
a slight performance boost, but also to prevent being able to scroll:

while(body.firstChild) {
body.removeChild(body.firstChild);

And finally, you will want to hide the cursor:

document.body.style.cursor = "none";

Controller

The 1ibscerad module is similar to 1ibscevideoout in that it isn't used by our process, and so |
wasn't able to get it working.

Calling sceradopen Will give an error, unless you call sceradinit beforehand. From this, we can
tell that separate processes' modules each have their own internal state, and that our process
wasn't using 1ibsceprad (since it wasn't already initialised).

So, like with graphics, we won't be able to hijack any handles already open, and trying to
create new handles won't work either.

Maybe we can't read from the controller because it is already in use, and we would be able to
read from a second controller, but unfortunately | can't test this since | only have 1 controller.

There are two workarounds for this: use the USB library to receive input from a third party

controller, or just use any WiFi compatible device with buttons to send input over a UDP
socket. | opted for using a Nintendo DS wirelessly.

USB flash drives

When you insert a USB into the PS4, a new device is listed under /dev/; ugeno.4 for the first
slot, and ugeno.5 for the second slot.

Unfortunately, we can't mount the device since the mount system call (and variations like
nmount) always return 1, EPERM.

However, we can access USB flash drives using the 1ibsceusbd.sprx module; it is very similar
to 1ibusb, but with the Sony naming convention, and the removal of contexts.

For example, the following 1ibusb code:


https://github.com/CTurt/PS4-SDK/blob/master/examples/pad/source/main.c
http://www.freebsd.org/cgi/man.cgi?format=html&query=libusb%283%29

libusb_context *context;

libusb_init(&context);
libusb_exit(context);

Would translate to this 1ibsceusbd code:

sceUsbdInit();
sceUsbdExit();

This is a very low level library for sending direct commands to USB devices, so it isn't really
ideal to use, but with the help of xerpi, | was able to port one of the 1ibusb examples to PS4,
and read the raw image of a USB flash drive.

Whilst it may be possible in the future to port a full FAT implementation based on direct USB
commands, for now | am just writing my data as the raw image of a USB flash drive using
Win32 Disk Imager (similar to dd for Linux).

USB findings with kernel access

The PS4 automatically attempts to mount USB flash drives when inserted. Once kernel code
execution has been used to enable UART output, the following message is displayed upon
insertion of a USB flash drive:

ugen@.4: <SanDisk> at usbus@

umassl: <SanDisk Cruzer Edge, class 0/0, rev 2.00/1.26, addr 4> on us
umassl: SCSI over Bulk-Only; quirks = 0x0000

umassl:2:1:-1: Attached to scbus?

dal at umass-siml bus 1 scbus2 target @ lun 0

dal: <SanDisk Cruzer Edge 1.26> Removable Direct Access SCSI-5 device

dal: 40.000MB/s transfers

dal: 3819MB (7821312 512 byte sectors: 255H 63S/T 486C)

[SceAutoMount] /mnt/usb@® is now available. fstype=exfatfs, device=/dg

MSG AutomounterMelUtil(void sceAutomounterMelUtil: :callbackMountAl1l(
device(/dev/dalsl): exfat(mediaType=0x1001) is mountd

Only devices formatted as FAT32 will be successfully mounted, and after kernel code execution
has been used to escape the filesystem sandbox, they may be accessed from /mnt/usbo and
/mnt/usbl.

However, without a kernel exploit the 1ibsceusbd module remains the only way to access

USBs, which actually gives more control over the device, but is less convenient to use for just
reading and writing files.

Cinoop

Cinoop is a GameBoy emulator | wrote a while ago. Whilst it isn't one of the best GameBoy


https://github.com/CTurt/PS4-SDK/blob/master/examples/usb/storage/source/main.c
http://sourceforge.net/projects/win32diskimager/
https://cturt.github.io/cinoop.html

emulators out there, | thought it would be a fun project to port to PS4 to show what code
execution within the Internet Browser is capable of (using all of the workarounds explained
above).

More on processes

Our environment has been restricted such that there are very few ways to interact with other
processes meaningfully; | experimented with potential methods of hijacking another process to
gain more access but have had little success:

The fork (2) system call is disabled, so we can't create new processes.
The chroot (61) system call is disabled.
The 1ibc function getprocname returns an empty string.

The execve (59) system call is allowed, and there is also a function called
sceSystemServiceLoadExec iN libSceSystemService.sprx, but we have no way of testing either
of these since the filesystem is read only and we can't mount USB flash drives. Executable files
on the PS4 have a custom header, and the contents are encrypted anyway.

We can copy some of the functions from 1ibprocstat, but this functionality is mostly useless
since we only have permission to target our own process.

Executable files with kernel access

The following two kernel functions seem to deal with the majority of integrity checks of
executable files: sceSblAuthMgrAuthHeader and sceSblAuthMgrIsLoadable.

With kernel code execution, executable files can be directly decrypted on the console, however
there isn't much benefit to this over just loading the module and dumping it from userland.

Root confusion

| mentioned in my last article that get1ogin returns "root". Whilst the username may be "root",
I'm not convinced that it is the conventional root that one would expect.

For example, getuid should always return 0 for the root user, but instead, it returns 1.


https://www.youtube.com/watch?v=94Q91xDJatE
http://www.freebsd.org/cgi/man.cgi?query=libprocstat&apropos=0&sektion=3&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html

I've also demonstrated in my last article that our process is running in a FreeBSD jail, which I'm
not sure is possible for a process running as root.

| don't understand enough about FreeBSD users and jails to really understand what is going
on, but | like to think that Sony somehow named a non-root user as "root" just to tease us.

Loading modules from their name

We can load modules from their name using scekernelLoadstartModule from libkernel:

int libPad = sceKernellLoadStartModule("1libScePad.sprx", @, NULL, 0,

With the module loaded in memory, we can read its base and size, and dump it like before.

This method of loading modules is preferable to the one explained in my last article since it will
initialise the imports table, so that you can actually call functions in it, and follow xrefs to other
modules like 1ibc and 1ibkernel in your dump.

This function also lets us dump a few modules that would cause a segmentation fault using the
old method.

Finding function offsets from function names

FreeBSD uses system call 337, x1dsym, to locate the address of a function in a kernel module
from its name.

In C, it can be used like this:

struct kld_sym_lookup data;
data.version = sizeof(struct kld_sym_lookup);
data.symname = "sys_getpid";

1f(kldsym(libKernel, KLDSYM_LOOKUP, &data) == 0) {
printf("%p\n", data.symvalue);
printf("%d\n", data.symsize);

In the PS4 kernel, this function has been disabled, and will always return ox4e, ENOSYS.

However, Sony implemented a dynamic linker in the PS4 kernel for userland dynamic libraries,
and we can use it to resolve userland functions.

System call 591, sys_dynlib dlsym, has become the basis of the PS4-SDK; once we've loaded
a module and got its handle, we can call any functions which we know the name and
parameters of.

The following ROP chain will get the offset of the getpid wrapper within 1ibkernel:

var result = chain.data;

var name = chain.data + 8;


http://www.psdevwiki.com/ps4/Libraries#Libraries_on_firmware_1.76
https://www.freebsd.org/cgi/man.cgi?query=kldsym&sektion=2

writeString(name, "getpid");
chain.syscall("getFunctionAddressByName", 591, LIBKERNEL, name, resu

chain.execute(function() {
logAdd(readString(name) + " libkernel offset = 0x" + (getU64from(

s

For firmware 1.76, the result is 0xbbbo.

We can verify this offset from our 1ibkernel dump (20 is the getpid system call number):

0000000VVVOOBBBA getpid proc near
000000000000BBBO mov rax, 20
000000000000BBB7 mov rl@, rcx
000000000000BBBA syscall
000000000000BBBC jb short loc_BBBF
000000000000BBBE

000000000V VOBBBF ;

000000000000BBBF

000000000000BBBF 1oc_BBBF:

00000000000V0OBBBF lea rcx, sub_DFo@
00000000000OBBC6 jmp rcx
000000000000BBC6 getpid endp

To get other function names to try, you should use the strings view of your disassembler (or just
search for sce in a hex editor); you'll find that Sony left some useful debug messages in many
of the modules.

For example, 1ibkernel contains the string "verify header: sceKernelPread failed %x\n".
Now that we've identified a scekernelrread function, we can guess others that may exist, such
asS sceKernelPwrite, and so on.

Unfortunately, scekernelPread and scekernelpbwrite aren't very interesting; they are just
wrappers for the regular FreeBSD file related system calls.

Since Sony has used a fairly consistent naming convention over the years, you can also try
using some PSP function names; many of them also exist in some of the PS4's modules.

Threads

The 1ibkernel module contains an implementation of 1ibpthread, but with the Sony naming
convention; an example of using threads has been added to the PS4-SDK.

An interesting thing to note is that the threads we create will continue to run in background
whilst other applications are active.

To demonstrate this, we can create a thread which will launch the Internet Browser after an
arbitrary timeout:


http://psp.jim.sh/pspsdk-doc/group__ModuleMgrKern.html
http://www.freebsd.org/cgi/man.cgi?query=pthread&apropos=0&sektion=3&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html
https://github.com/CTurt/PS4-SDK/blob/master/examples/threads/source/main.c

int (*sceSystemServicelLaunchWebBrowser)(const char *uri, void *);

void *t(void *n) {
sceKernelSleep(10);

sceSystemServicelLaunchWebBrowser("http://google.com/", NULL);
return NULL;

_main(void) {

initKernel();

initLibc();
initPthread();

int 1ibSceSystemService;
loadModule("1ibSceSystemService.sprx", &libSceSystemService);

RESOLVE(11ibSceSystemService, sceSystemServiceLaunchWebBrowser);

ScePthread thread;
scePthreadCreate(&thread, NULL, t, NULL, "t");

return 0;

Reading memory protection

~ -~



https://www.youtube.com/watch?v=tBev5h8vOtg

VVe can use Z of Sony’'s custom system calls, b4/ and b/2, to read the properties of a memory
page (16KB), including its protection:

function getStackProtection() {
var info = chain.data;

chain.syscall("getMemoryInfo", 547, stack_base, info);

chain.execute(function() {
var base = getU64from(info + 0x0);
var size = getU64from(info + 0x8) - base;
var protection = getU32from(info + 0x10);

logAdd("Stack base: 0x" + base.toString(16));

logAdd("Stack size: Ox" + size.toString(16));

logAdd("Stack protection: 0x" + protection.toString(16));
1)

function getStackName() {
var info = chain.data;

chain.syscall("getOtherMemoryInfo", 572, stack_base, @, info, 0x4

chain.execute(function() {
var base = getU64from(info + 0x0);
var size = getU64from(info + 0Ox8) - base;
var name readString(info + 0x20);

logAdd("Stack base: @0x" + base.toString(16));
logAdd("Stack size: @Ox" + size.toString(16));
logAdd("Stack name: " + name);

The above code shows us that the stack's name is "main stack" and its protection is 3 (read
and write).

Listing all memory pages

As you know from my last article, it is difficult to map out all of the PS4's memory due to ASLR
(everything is always randomly arranged).

Luckily for us, there is something we can do to partially get around this: if the second argument
of system call 572 is set to 1 and we specify an address which isn't mapped, the next mapped
memory page will be used.




This means that we can specify any arbitrary address, and always find a valid memory page.
For example, specifying 0 as the address will tell us information about the first mapped

memory page:

var info = chain.data;

chain.syscall("getOtherMemoryInfo", 572, @, 1, info, 0x40);

chain.execute(function() {
var base = getU64from(info + 0x0);
var size = getU64from(info + 0x8) - base;
var name readString(info + 0x20);

logAdd("First page base: 0x" + base.toString(16));
logAdd("First page size: 0x" + size.toString(16));

logAdd("First page name: + name);

Using this, we can extract a complete list of memory pages accessible from our process:

Name Address
executable 0x65620000
executable 0x65624000

anon
anon
anon
anon
anon
anon
anon
anon

100081940198
:00081baf2243
:00081add693a
:00081baf22do6
:00081add739e
:00081addoad?2
:00081addoad?2
1000815405218
anon:
anon:
anon:
anon:
anon:

00081lac4f19e
00081add739e
00081ba08107
00081ad834f7
00081add739e

0x200578000
0x20057c000
0x200584000
0x20058c000
0x200594000
0x200694000
0x20069c000
0x200604000
0x200608000
0x2006b0000
0x2007b0000
0x2007b4000
0x2007b8000
0x7ef788000

stack guard
JavaScriptCore: :BlockFree
stack guard
RscHd1Man:Worker

stack guard
SceWebReceiveQueue

stack guard

SceFastMalloc

Ox7ef78c000
Ox7ef79c000
Ox7ef7a0000
0x7ef7b0000
Ox7ef7b4000
Ox7ef7c4000
Ox7ef7c8000

NAx /e

Size Protectiq
0x4000
0x4000
0x4000
0x8000
0x8000
0x8000
0x100000
0x8000
0x8000
0x4000
0x8000
0x100000
0x4000
0x4000
0x300000
0x4000
0x10000
0x4000
0x10000
0x4000
0x10000
0x4000
0x10000




sceVideoCoreServerIFThread

(NoName)WebProcess.self
main stack

1ibSceRtc. sprx
1ibSceRtc. sprx
libSceSystemService.sprx
libSceSystemService.sprx
libSceSystemService.sprx
libSceSysmodule. sprx
1libSceSysmodule. sprx
libkernel.sprx
libkernel.sprx
1ibSceRegMgr. sprx
1ibSceRegMgr. sprx
1ibSceSsl.sprx
1ibSceSsl.sprx
11bSceOrbisCompat.sprx
11bSceOrbisCompat.sprx
11ibSceOrbisCompat. sprx
libScelLibcInternal.sprx
libScelLibcInternal.sprx
1ibScelLibcInternal.sprx
1ibScePigletv2VSH. sprx
libScePigletv2VSH. sprx

1ibSceVideoCoreServerInterface.
1ibSceVideoCoreServerInterface.

1ibSceWebKit2.sprx
1ibSceWebKit2.sprx
1ibSceWebKit2.sprx
1ibScelIpmi.sprx
1ibScelIpmi.sprx
1ibSceMbus. sprx
1ibSceMbus. sprx
1ibSceCompositeExt.sprx
1ibSceCompositeExt.sprx
1ibSceNet. sprx
1ibSceNet. sprx
1ibSceNetCtl.sprx
1ibSceNetCtl.sprx
1ibScePad. sprx
1ibScePad. sprx
1ibSceVideoOut. sprx
1ibSceVideoOut. sprx
11ibSceSysCore.sprx

Ox7ef7dc000
Ox7ef7ec@00
Ox7ef7f0000
0x7ef9f0000
0x802ccc00
0x802cd0000
0x803468000
0x80347c000
0x803480000
0x8049bc000
0x8049c0000
0x808774000
0x8087a8000
0x80a520000
0x80a524000
0x80d1c0000
0x80d208000
0x80f648000
0x80f7a4000
0x80f7dc000
0x8130dc000
0x8131ac000
0x8131b4000
0x815404000
0x815478000
0x819400000
0x81940c000
0x81ac44000
0x81d058000
0x81d1a0000
0x81da60000
0x81da74000
0x828800000
0x8288a8000
0x829970000
0x829978000
0x82ccdc00
0x82ccf8000
0x833f1c000
0x833f24000
0x835958000
0x835960000
0x83afe4000
0x83aff0000
0x83cdf4000

0x10000
0x4000
0x200000
0x4000
0x4000
0x4000
0x14000
0x4000
0x8000
0x4000
0x4000
0x34000
0x2c000
0x4000
0x4000
0x48000
0x8000
0x15c000
0x38000
0x4000
0xd0000
0x8000
0x18000
0x74000
0x2c000
0xc000
0x4000
0x2414000
0x148000
Oxbc000
0x14000
0x14000
0x8000
0x4000
0x8000
0x44000
0x1c000
0x14000
0x8000
0x4000
0x8000
0x8000
0xc000
0x4000
0x8000




1ibSceSysCore.sprx
ScelLibcInternalHeap
SceKernelPrimaryTcbTls
SceVideoCoreServerInterface
ScelLibcInternalHeap
ScelLibcInternalHeap
ScelLibcInternalHeap
ScelLibcInternalHeap
anon : 00080f64a807
anon:00080f64a98d
anon:00080f64aaa5
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
CompositorClient
CompositorClient
CompositorClient
Compositor(Client
CompositorClient
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client
Compositor(Client

0x83cdf co00
0x880984000
0x880994000
0x880998000
0x88099c000
0x880a5c000
0x880a7c000
0x880f0c000
0x912000000
0x912100000
0x922100000
0x1100000000
0x1100200000
0x1100400000
0x1100000000
0x1180000000
0x1180200000
0x1180400000
0x1180600000
0x1180800000
0x1180000000
0x1180c00000
0x1180e00000
0x1181000000
0x1181200000
0x1181400000
0x1181600000
0x1181800000
0x1181000000
0x1181c00000
0x1181e00000
0x1182000000
0x1184000000
0x1186000000
0x1188000000
0x1180000000
0x118c000000
0x118e000000

0x4000
0x10000
0x4000
0x4000
0xc0000
0x20000
0x490000
0x470000
0x100000

0x10000000

0x4000000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000
0x200000

CompositorClient iS always based at 0x1100000000, but all other addresses will be different
each time.

This list is almost exactly what we expected, a bunch of modules each with their own data and
code pages, the stack, some stack guards, and some other miscellaneous mappings.

There is something peculiar though, compositorclient is mapped as 0x33, which is definitely




not a standard FreeBSD memory protection!

GPU

Since the CPU and GPU share a unified memory pool, Sony added their own protection flags
to control what the GPU can access as well as keeping the standard FreeBSD protections for
the CPU.

These can be found by either reversing the 1ibsceGnmpriver module, or just by running some
tests and thinking logically:

e CPURead -1
CPU Write - 2
CPU Execute - 4
GPU Execute - 8
GPU Read - 16
e GPU Write - 32

CompositorClient iS marked as 0x33 (1 | 2 | 16 | 32), CPURW and GPU RW.

Sony handled the GPU protection system very cleverly; we can only give a processor as much
access as the other one has, for example:

// Give GPU read and write access to stack:
chain.syscall("mprotect", 74, stack_base, 16 * 1024 * 1024, 1 | 2 |

// Give GPU read and execute access to WebKitZ2 module:
chain.syscall("mprotect"”, 74, module_infos[WEBKITZ2].image_base, 16 *

But trying to bypass DEP will fail:

// Give GPU read and execute access to stack:
chain.syscall("mprotect", 74, stack_base, 16 * 1024 * 1024, 1 | 2 |

// Give GPU read and write access to WebKitZ2 module:
chain.syscall("mprotect"”, 74, module_infos[WEBKITZ].image_base, 16 *

Reqistry

There is a module called 1ibscerRegMgr.sprx, Which indicates that Sony added some kind of
registry system to the PS4, since FreeBSD doesn't come with one.

All functions in this module are wrappers for system call 532, which was previously thought to
be wait6; the first argument is a command.

The fact that waite has been overwritten with a custom Sony system call suggests that the
system call numbers are not as similar to standard FreeBSD 9.0 as | initially believed.

Although this module is loaded and used by the Internet Browser, it is restricted from our
process; all function calls return 0x80020001, the Sony equivalent of Eperm.


http://fxr.watson.org/fxr/source/kern/syscalls.master?v=FREEBSD9#L952

More proof of the lack of kernel ASLR

System call 617 takes at least 1 argument, and returns a kernel pointer; | don't know anything
more about this system call, but since the kernel pointer is always the same, we can use it as
further evidence that there is no kernel ASLR on firmware 1.76.

Dumping files
Recently, | added a File Browser to PS4-Playground, although | didn't add a way to dump files.

With code execution, files can be dumped very easily. I've added an example to PS4-SDK
which shows how to do it.

It is also possible to do using only ROP, but it is a bit more hassle, and must be done in
multiple stages.

By using PS4 File Browser, you should be able to find some interesting things to dump; I'll be
dumping /sandboxDir/common/font/DFHEI5-SONY. ttf.

If the path to the file you want to dump starts with 10 random characters (the sandbox
directory), you should note that this path will change each time you reboot the PS4. You can
use the ROP chain below to find it:

setU64to(chain.data, 11);
chain.syscall("getSandboxDirectory"”, 602, @, chain.data + 8, chain.dd
chain.write_rax_ToVariable(@);

chain.execute(function() {
var name = readString(chain.data + 8);
logAdd(name);

i3 E

For me, it was aagjoxlzix.

For very small files, you can simply read into chain.data, but for larger files, you will need to
allocate your own memory.

We can do this through the standard mmap system call. Refresh the page, and use this chain:

chain.syscall("mmap", 477, 0, 0x1000000, 1 | 2, 409, -1, 0);
chain.write_rax_ToVariable(d);
chain.execute(function() {

chain.logVariable(0);

s

In this example, the address returned was 0x200744000.

Refresh the page again, and use this chain to read the file and get its size, replace aagjoxizjx
with your sandbox directory and 0x200744000 with whatever address the above chain printed:



https://github.com/CTurt/PS4-playground/blob/gh-pages/browser.html
https://github.com/CTurt/PS4-SDK/blob/master/examples/filesystem/files/source/main.c

writeString(chain.data, "/AaQj@x1zjX/common/font/DFHEI5-SONY.ttf");
chain.syscall("open", 5, chain.data, 0, 0);
chain.write_rax_ToVariable(@);

chain.read_rdi_FromVariable(0);

chain.syscall("read", 3, undefined, 0x200744000, 0x1000000);

chain.syscall("fstat", 189, undefined, chain.data);
chain.execute(function() {

chain.logVariable(0);

logAdd("Size: " + getU32from(chain.data + 0x48).toString());

s

The font | am dumping is 8312744 bytes.

Now open whatever proxy or network tool you use to intercept traffic on your computer. |
created a simple C server called TCP-Dump which you can use if you wish.

Refresh the page, and use this chain to send the buffer; replace the IP, port, address, and file
size with the appropriate values:

sendBuffer("192.168.0.4", 9023, 0x200744000, 8312744),
chain.execute(function() {

logAdd("Dumped");
DK

Using cookies, you can pass information to subsequent stages automatically, but | won't go into
it now.

You should also note that the filesystem is read only; for example, attempting to overwrite a
font will crash your PS4 (but it'll be fine afterwards).

We can also dump the modules located at /sandboxDir/common/1ib/, but they are encrypted.

Encryption

The most common questions | am asked pertain to encryption. It is a huge part of the PS4's
security which prevents us from analysing firmware updates, games, saves and more.

The reason | didn't mention encryption in my last article is because trying to defeat it would be
a complete waste of time. The PS4 uses AES (like the PS3 and PS Vita), which is the same
type of encryption used by the U.S. government.

People also don't seem to realise that there are multiple encryption keys used within the PS4,
even if we found a way to decrypt save data, we still wouldn't be able to decrypt PUP updates
for example.

With the current level of access we have to the PS4 there is no way to get any keys: brute
forcing them would take longer than the lifetime of the universe even under ideal conditions,
and | doubt any of the few engineers at Sony trusted with them would want to lose their job by
leaking them.

The only exception to this is would be for implementation mistakes such as the PS3's infamous


https://github.com/CTurt/TCP-Dump
https://twitter.com/CTurtE/status/633332237346426880
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.ps3devwiki.com/ps3/Keys

use of the constant 4 instead of what should have been a random number.

Whilst it is unlikely that Sony has made another mistake like this in the core of the PS4's
encryption, it is not uncommon for other companies to accidentally give us access to
unencrypted content. If you snoop around various games' update servers, you might find some
debug ELFs for example.

Furthermore, encryption on the PS4 is handled by a separate processor, called SAMU, which
is very locked down. Even with a kernel exploit, the SAMU processor is one of the few areas
which we don't have complete control over. Although we can interact with it to decrypt almost
everything, it is impossible to extract any keys so that decryption could be done externally.

Saves

Save data is stored at the following location:

/user/home/[userID]/savedata/[titleID]/

For example:

/user/home/10000000/savedata/CUSAQO455/FFXIVSYSTEM. bin

We can dump these files, but they are encrypted, and are identical to the files copied from
using the PS4's official USB save export feature.

It is unlikely that developers directly deal with this encryption; | assume that the 1ibscesavepata
module handles it all.

| was able to load and initialise this module successfully:

int libSave = sceKernellLoadStartModule("1libSceSaveData.sprx", @, NUL

int (*sceSaveDataInitialize)(void *);
RESOLVE(1ibSave, sceSaveDatalnitialize);

sceSaveDatalInitialize(NULL);

But | just received error codes when attempting to mount or read/write save data.

Summary

With the current level of access that code execution has, it is possible to run some types of
userland homebrew, such as a GameBoy emulator.

However, not being able to use official controllers makes it impractical for standardising any
kind of input method; combined with not being able to use the official graphics library, it is clear
that homebrew is not yet ready for a full release.

It may not be impossible for our process to read official controllers and to hijack the

o~ ~ v rmanAdidlAa L AR A feivnAl



lilpbscevideoout IHHvuuic, Ul it woOullll L e uividl.

| will continue to run tests in the current environment, and add everything | find to the PS4-
SDK, but from what I've seen so far, | don't believe that heavily restricted userland code
execution is going to provide a suitable homebrew solution for the masses; a kernel exploit
would definitely be the way forward.

Thanks

o flatz

« SKFU
e droogie
o Xerpi

¢ bigboss
e Hunger
o Takezo
e Proxima



