
! " #

Sina & Shahriar's Blog
An aggressive out-of-order blog...

+

Hypervisor From Scratch – Part 3: Setting up Our First Virtual
Machine
Published September 15, 2018 by Sinaei

IntroductionIntroduction

This is the third part of the tutorial “Hypervisor From Scratch“. You may have
noticed that the previous parts have steadily been getting more complicated. This
part should teach you how to get started with creating your own VMM, we go to
demonstrate how to interact with the VMM from Windows User-mode (IOCTL
Dispatcher), then we solve the problems with the affinity and running code in a
special core. Finally, we get familiar with initializing VMXON Regions and VMCS
Regions then we load our hypervisor regions into each core and implement our
custom functions to work with hypervisor instruction and many more things related
to Virtual-Machine Control Data Structures (VMCS).

Some of the implementations derived from HyperBone (Minimalistic VT-X

$ 1

https://twitter.com/Intel80x86
https://github.com/binvoke
https://rayanfam.com/feed
https://rayanfam.com/
https://github.com/DarthTon/HyperBone

hypervisor with hooks) and HyperPlatform by Satoshi Tanda and hvpp which is
great work by my friend Petr Beneš the person who really helped me creating these
series.

The full source code of this tutorial is available on :

[https://github.com/SinaKarvandi/Hypervisor-From-Scratch]

Interacting with VMM Driver f rom User-ModeInteracting with VMM Driver f rom User-Mode

The most important function in IRP MJ functions for us is DrvIOCTLDispatcher
(IRP_MJ_DEVICE_CONTROL) and that’s because this function can be called from
user-mode with a special IOCTL number, it means you can have a special code in
your driver and implement a special functionality corresponding this code, then by
knowing the code (from user-mode) you can ask your driver to perform your
request, so you can imagine that how useful this function would be.

Now let’s implement our functions for dispatching IOCTL code and print it from our
kernel-mode driver.

As long as I know, there are several methods by which you can dispatch IOCTL e.g
METHOD_BUFFERED, METHOD_NIETHER, METHOD_IN_DIRECT,
METHOD_OUT_DIRECT. These methods should be followed by the user-mode caller
(the difference are in the place where buffers transfer between user-mode and
kernel-mode or vice versa), I just copy the implementations with some minor
modification form Microsoft’s Windows Driver Samples, you can see the full code for
user-mode and kernel-mode.

Imagine we have the following IOCTL codes:

1
2
3
4
5
6
7
8
9
10
11
12
13

//
// Device type -- in the "User Defined" range."
//
#define SIOCTL_TYPE 40000

//
// The IOCTL function codes from 0x800 to 0xFFF are for customer use.
//
#define IOCTL_SIOCTL_METHOD_IN_DIRECT \
 CTL_CODE(SIOCTL_TYPE, 0x900, METHOD_IN_DIRECT, FILE_ANY_ACCESS)

#define IOCTL_SIOCTL_METHOD_OUT_DIRECT \
 CTL_CODE(SIOCTL_TYPE, 0x901, METHOD_OUT_DIRECT , FILE_ANY_ACCESS)

https://github.com/tandasat/HyperPlatform
https://github.com/tandasat/HyperPlatform
https://github.com/wbenny/hvpp
https://twitter.com/PetrBenes
https://github.com/SinaKarvandi/Hypervisor-From-Scratch
https://github.com/Microsoft/Windows-driver-samples
https://github.com/Microsoft/Windows-driver-samples/blob/master/general/ioctl/wdm/exe/testapp.c
https://github.com/Microsoft/Windows-driver-samples/blob/master/general/ioctl/wdm/sys/sioctl.c

There is a convention for defining IOCTLs as it mentioned here,

The IOCTL is a 32-bit number. The first two low bits define the “transfer type” which
can be METHOD_OUT_DIRECT, METHOD_IN_DIRECT, METHOD_BUFFERED or
METHOD_NEITHER.

The next set of bits from 2 to 13 define the “Function Code”. The high bit is referred
to as the “custom bit”. This is used to determine user-defined IOCTLs versus system
defined. This means that function codes 0x800 and greater are customs defined
similarly to how WM_USER works for Windows Messages.

The next two bits define the access required to issue the IOCTL. This is how the I/O
Manager can reject IOCTL requests if the handle has not been opened with the
correct access. The access types are such as FILE_READ_DATA and
FILE_WRITE_DATA for example.

The last bits represent the device type the IOCTLs are written for. The high bit again
represents user-defined values.

In IOCTL Dispatcher, The “Parameters.DeviceIoControl.IoControlCode” of the
IO_STACK_LOCATION contains the IOCTL code being invoked.

For METHOD_IN_DIRECT and METHOD_OUT_DIRECT, the difference between IN
and OUT is that with IN, you can use the output buffer to pass in data while the OUT
is only used to return data.

The METHOD_BUFFERED is a buffer that the data is copied from this buffer. The
buffer is created as the larger of the two sizes, the input or output buffer. Then the
read buffer is copied to this new buffer. Before you return, you simply copy the
return data into the same buffer. The return value is put into the IO_STATUS_BLOCK
and the I/O Manager copies the data into the output buffer. The METHOD_NEITHER
is the same.

14
15
16
17
18
19

#define IOCTL_SIOCTL_METHOD_BUFFERED \
 CTL_CODE(SIOCTL_TYPE, 0x902, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_SIOCTL_METHOD_NEITHER \
 CTL_CODE(SIOCTL_TYPE, 0x903, METHOD_NEITHER , FILE_ANY_ACCESS)

https://www.codeproject.com/Articles/9575/Driver-Development-Part-2-Introduction-to-Implemen

Ok, let’s see an example :

First, we declare all our needed variable.

Note that the PAGED_CODE macro ensures that the calling thread is running at an
IRQL that is low enough to permit paging.

Then we have to use switch-case through the IOCTLs (Just copy buffers and show it
from DbgPrint()).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

NTSTATUS DrvIOCTLDispatcher(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
 PIO_STACK_LOCATION irpSp;// Pointer to current stack location
 NTSTATUS ntStatus = STATUS_SUCCESS;// Assume success
 ULONG inBufLength; // Input buffer length
 ULONG outBufLength; // Output buffer length
 PCHAR inBuf, outBuf; // pointer to Input and output buffer
 PCHAR data = "This String is from Device Driver !!!";
 size_t datalen = strlen(data) + 1;//Length of data including null
 PMDL mdl = NULL;
 PCHAR buffer = NULL;

 UNREFERENCED_PARAMETER(DeviceObject);

 PAGED_CODE();

 irpSp = IoGetCurrentIrpStackLocation(Irp);
 inBufLength = irpSp->Parameters.DeviceIoControl.InputBufferLength;
 outBufLength = irpSp->Parameters.DeviceIoControl.OutputBufferLength;

 if (!inBufLength || !outBufLength)
 {
 ntStatus = STATUS_INVALID_PARAMETER;
 goto End;
 }

...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 switch (irpSp->Parameters.DeviceIoControl.IoControlCode)
 {
 case IOCTL_SIOCTL_METHOD_BUFFERED:

 DbgPrint("Called IOCTL_SIOCTL_METHOD_BUFFERED\n");
 PrintIrpInfo(Irp);
 inBuf = Irp->AssociatedIrp.SystemBuffer;
 outBuf = Irp->AssociatedIrp.SystemBuffer;
 DbgPrint("\tData from User :");
 DbgPrint(inBuf);
 PrintChars(inBuf, inBufLength);
 RtlCopyBytes(outBuf, data, outBufLength);
 DbgPrint(("\tData to User : "));
 PrintChars(outBuf, datalen);
 Irp->IoStatus.Information = (outBufLength < datalen ? outBufLength : datalen
 break;

The PrintIrpInfo is like this :

Even though you can see all the implementations in my GitHub but that’s enough, in
the rest of the post we only use the IOCTL_SIOCTL_METHOD_BUFFERED method.

Now from user-mode and if you remember from the previous part where we create a
handle (HANDLE) using CreateFile, now we can use the DeviceIoControl to call
DrvIOCTLDispatcher (IRP_MJ_DEVICE_CONTROL) along with our parameters from
user-mode.

17
18

...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

VOID PrintIrpInfo(PIRP Irp)
{
 PIO_STACK_LOCATION irpSp;
 irpSp = IoGetCurrentIrpStackLocation(Irp);

 PAGED_CODE();

 DbgPrint("\tIrp->AssociatedIrp.SystemBuffer = 0x%p\n",
 Irp->AssociatedIrp.SystemBuffer);
 DbgPrint("\tIrp->UserBuffer = 0x%p\n", Irp->UserBuffer);
 DbgPrint("\tirpSp->Parameters.DeviceIoControl.Type3InputBuffer = 0x%p\n",
 irpSp->Parameters.DeviceIoControl.Type3InputBuffer);
 DbgPrint("\tirpSp->Parameters.DeviceIoControl.InputBufferLength = %d\n",
 irpSp->Parameters.DeviceIoControl.InputBufferLength);
 DbgPrint("\tirpSp->Parameters.DeviceIoControl.OutputBufferLength = %d\n",
 irpSp->Parameters.DeviceIoControl.OutputBufferLength);
 return;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 char OutputBuffer[1000];
 char InputBuffer[1000];
 ULONG bytesReturned;
 BOOL Result;

 StringCbCopy(InputBuffer, sizeof(InputBuffer),
 "This String is from User Application; using METHOD_BUFFERED");

 printf("\nCalling DeviceIoControl METHOD_BUFFERED:\n");

 memset(OutputBuffer, 0, sizeof(OutputBuffer));

 Result = DeviceIoControl(handle,
 (DWORD)IOCTL_SIOCTL_METHOD_BUFFERED,
 &InputBuffer,
 (DWORD)strlen(InputBuffer) + 1,
 &OutputBuffer,
 sizeof(OutputBuffer),
 &bytesReturned,
 NULL
);

https://rayanfam.com/topics/hypervisor-from-scratch-part-2/

There is an old, yet great topic here which describes the different types of IOCT
dispatching.

I think we’re done with WDK basics, its time to see how we can use Windows in order
to build our VMM.

Per Processor Configuration and Setting AffinityPer Processor Configuration and Setting Affinity

Affinity to a special logical processor is one of the main things that we should
consider when working with the hypervisor.

Unfortunately, in Windows, there is nothing like on_each_cpu (like it is in Linux
Kernel Module) so we have to change our affinity manually in order to run on each
logical processor. In my Intel Core i7 6820HQ I have 4 physical cores and each core
can run 2 threads simultaneously (due to the presence of hyper-threading) thus we
have 8 logical processors and of course 8 sets of all the registers (including general
purpose registers and MSR registers) so we should configure our VMM to work on 8

22
23
24
25
26
27
28
29

 if (!Result)
 {
 printf("Error in DeviceIoControl : %d", GetLastError());
 return 1;

 }
 printf(" OutBuffer (%d): %s\n", bytesReturned, OutputBuffer);

https://www.codeproject.com/Articles/9575/Driver-Development-Part-2-Introduction-to-Implemen

logical processors.

To get the count of logical processors you can use KeQueryActiveProcessors(),
then we should pass a KAFFINITY mask to the KeSetSystemAffinityThread which
sets the system affinity of the current thread.

KAFFINITY mask can be configured using a simple power function :

then we should use the following code in order to change the affinity of the
processor and run our code in all the logical cores separately:

Conversion between the physical and virtual addressesConversion between the physical and virtual addresses

VMXON Regions and VMCS Regions (see below) use physical address as the operand
to VMXON and VMPTRLD instruction so we should create functions to convert Virtual
Address to Physical address:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

int ipow(int base, int exp) {
 int result = 1;
 for (;;)
 {
 if (exp & 1)
 {
 result *= base;
 }
 exp >>= 1;
 if (!exp)
 {
 break;
 }
 base *= base;
 }
 return result;
}

1
2
3
4
5
6
7
8
9
10

 KAFFINITY kAffinityMask;
 for (size_t i = 0; i < KeQueryActiveProcessors(); i++)
 {
 kAffinityMask = ipow(2, i);
 KeSetSystemAffinityThread(kAffinityMask);
 DbgPrint("===");
 DbgPrint("Current thread is executing in %d th logical processor.",i);
 // Put you function here !

 }

1
2
3

UINT64 VirtualAddress_to_PhysicallAddress(void* va)
{
 return MmGetPhysicalAddress(va).QuadPart;

And as long as we can’t directly use physical addresses for our modifications in
protected-mode then we have to convert physical address to virtual address.

Query about Hypervisor f rom the kernelQuery about Hypervisor f rom the kernel

In the previous part, we query about the presence of hypervisor from user-mode,
but we should consider checking about hypervisor from kernel-mode too. This
reduces the possibility of getting kernel errors in the future or there might be
something that disables the hypervisor using the lock bit, by the way, the following
code checks IA32_FEATURE_CONTROL MSR (MSR address 3AH) to see if the lock bit
is set or not.

The structures used in the above function declared like this:

4 }

1
2
3
4
5
6
7

UINT64 PhysicalAddress_to_VirtualAddress(UINT64 pa)
{
 PHYSICAL_ADDRESS PhysicalAddr;
 PhysicalAddr.QuadPart = pa;

 return MmGetVirtualForPhysical(PhysicalAddr);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

BOOLEAN Is_VMX_Supported()
{
 CPUID data = { 0 };

 // VMX bit
 __cpuid((int*)&data, 1);
 if ((data.ecx & (1 << 5)) == 0)
 return FALSE;

 IA32_FEATURE_CONTROL_MSR Control = { 0 };
 Control.All = __readmsr(MSR_IA32_FEATURE_CONTROL);

 // BIOS lock check
 if (Control.Fields.Lock == 0)
 {
 Control.Fields.Lock = TRUE;
 Control.Fields.EnableVmxon = TRUE;
 __writemsr(MSR_IA32_FEATURE_CONTROL, Control.All);
 }
 else if (Control.Fields.EnableVmxon == FALSE)
 {
 DbgPrint("[*] VMX locked off in BIOS");
 return FALSE;
 }

 return TRUE;
}

VMXON RegionVMXON Region

Before executing VMXON, software should allocate a naturally aligned 4-KByte
region of memory that a logical processor may use to support VMX operation. This
region is called the VMXON region. The address of the VMXON region (the VMXON
pointer) is provided in an operand to VMXON.

A VMM can (should) use different VMXON Regions for each logical processor
otherwise the behavior is “undefined”.

Note: The first processors to support VMX operation require that the following bits
be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. The restrictions on
CR0.PE and CR0.PG imply that VMX operation is supported only in paged protected
mode (including IA-32e mode). Therefore, the guest software cannot be run in
unpaged protected mode or in real-address mode.

Now that we are configuring the hypervisor, we should have a global variable that
describes the state of our virtual machine, I create the following structure for this
purpose, currently, we just have two fields (VMXON_REGION and VMCS_REGION)
but we will add new fields in this structure in the future parts.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

typedef union _IA32_FEATURE_CONTROL_MSR
{
 ULONG64 All;
 struct
 {
 ULONG64 Lock : 1; // [0]
 ULONG64 EnableSMX : 1; // [1]
 ULONG64 EnableVmxon : 1; // [2]
 ULONG64 Reserved2 : 5; // [3-7]
 ULONG64 EnableLocalSENTER : 7; // [8-14]
 ULONG64 EnableGlobalSENTER : 1; // [15]
 ULONG64 Reserved3a : 16; //
 ULONG64 Reserved3b : 32; // [16-63]
 } Fields;
} IA32_FEATURE_CONTROL_MSR, *PIA32_FEATURE_CONTROL_MSR;

typedef struct _CPUID
{
 int eax;
 int ebx;
 int ecx;
 int edx;
} CPUID, *PCPUID;

And of course a global variable:

I create the following function (in memory.c) to allocate VMXON Region and execute
VMXON instruction using the allocated region’s pointer.

1
2
3
4
5

typedef struct _VirtualMachineState
{
 UINT64 VMXON_REGION; // VMXON region
 UINT64 VMCS_REGION; // VMCS region
} VirtualMachineState, *PVirtualMachineState;

1 extern PVirtualMachineState vmState;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

BOOLEAN Allocate_VMXON_Region(IN PVirtualMachineState vmState)
{
 // at IRQL > DISPATCH_LEVEL memory allocation routines don't work
 if (KeGetCurrentIrql() > DISPATCH_LEVEL)
 KeRaiseIrqlToDpcLevel();

 PHYSICAL_ADDRESS PhysicalMax = { 0 };
 PhysicalMax.QuadPart = MAXULONG64;

 int VMXONSize = 2 * VMXON_SIZE;
 BYTE* Buffer = MmAllocateContiguousMemory(VMXONSize + ALIGNMENT_PAGE_SIZE

 PHYSICAL_ADDRESS Highest = { 0 }, Lowest = { 0 };
 Highest.QuadPart = ~0;

 //BYTE* Buffer = MmAllocateContiguousMemorySpecifyCache(VMXONSize + ALIGNMENT_PAGE_SIZE, Lowest, Highest, Lowest, MmNonCached);

 if (Buffer == NULL) {
 DbgPrint("[*] Error : Couldn't Allocate Buffer for VMXON Region.");
 return FALSE;// ntStatus = STATUS_INSUFFICIENT_RESOURCES;
 }
 UINT64 PhysicalBuffer = VirtualAddress_to_PhysicallAddress(Buffer);

 // zero-out memory
 RtlSecureZeroMemory(Buffer, VMXONSize + ALIGNMENT_PAGE_SIZE);
 UINT64 alignedPhysicalBuffer = (BYTE*)((ULONG_PTR)(PhysicalBuffer + ALIGNMENT_PAGE_SIZE

 UINT64 alignedVirtualBuffer = (BYTE*)((ULONG_PTR)(Buffer + ALIGNMENT_PAGE_SIZE

 DbgPrint("[*] Virtual allocated buffer for VMXON at %llx", Buffer);
 DbgPrint("[*] Virtual aligned allocated buffer for VMXON at %llx", alignedVirtualBuffer
 DbgPrint("[*] Aligned physical buffer allocated for VMXON at %llx", alignedPhysicalBuffer

 // get IA32_VMX_BASIC_MSR RevisionId

 IA32_VMX_BASIC_MSR basic = { 0 };

 basic.All = __readmsr(MSR_IA32_VMX_BASIC);

 DbgPrint("[*] MSR_IA32_VMX_BASIC (MSR 0x480) Revision Identifier %llx", basic

Let’s explain the above function,

This code is for changing current IRQL Level to DISPATCH_LEVEL but we can ignore
this code as long as we use MmAllocateContiguousMemory but if you want to use
another type of memory for your VMXON region you should
use MmAllocateContiguousMemorySpecifyCache (commented), other types of
memory you can use can be found here.

Note that to ensure proper behavior in VMX operation, you should maintain the
VMCS region and related structures in writeback cacheable memory. Alternatively,
you may map any of these regions or structures with the UC memory type. Doing so
is strongly discouraged unless necessary as it will cause the performance of
transitions using those structures to suffer significantly.

Write-back is a storage method in which data is written into the cache every time a
change occurs, but is written into the corresponding location in main memory only
at specified intervals or under certain conditions. Being cachable or not cachable
can be determined from the cache disable bit in paging structures (PTE).

By the way, we should allocate 8192 Byte because there is no guarantee that
Windows allocates the aligned memory so we can find a piece of 4096 Bytes aligned
in 8196 Bytes. (by aligning I mean, the physical address should be divisible by 4096

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 //* (UINT64 *)alignedVirtualBuffer = 04;

 //Changing Revision Identifier
 *(UINT64 *)alignedVirtualBuffer = basic.Fields.RevisionIdentifier;

 int status = __vmx_on(&alignedPhysicalBuffer);
 if (status)
 {
 DbgPrint("[*] VMXON failed with status %d\n", status);
 return FALSE;
 }

 vmState->VMXON_REGION = alignedPhysicalBuffer;

 return TRUE;
}

1
2
3

 // at IRQL > DISPATCH_LEVEL memory allocation routines don't work
 if (KeGetCurrentIrql() > DISPATCH_LEVEL)
 KeRaiseIrqlToDpcLevel();

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ne-wdm-_memory_caching_type

without any reminder).

In my experience, the MmAllocateContiguousMemory allocation is always aligned,
maybe it is because every page in PFN are allocated by 4096 bytes and as long as we
need 4096 Bytes, then it’s aligned.

If you are interested in Page Frame Number (PFN) then you can read Inside Windows
Page Frame Number (PFN) – Part 1 and Inside Windows Page Frame Number (PFN) –
Part 2.

Now we should convert the address of the allocated memory to its physical address
and make sure it’s aligned.

Memory that MmAllocateContiguousMemory allocates is uninitialized. A kernel-
mode driver must first set this memory to zero. Now we should
use RtlSecureZeroMemory for this case.

From Intel’s manual (24.11.5 VMXON Region):

Before executing VMXON, software should write the VMCS revision identifier
to the VMXON region. (Specifically, it should write the 31-bit VMCS revision
identifier to bits 30:0 of the first 4 bytes of the VMXON region; bit 31 should
be cleared to 0.)

1
2
3
4
5
6
7
8
9

 PHYSICAL_ADDRESS PhysicalMax = { 0 };
 PhysicalMax.QuadPart = MAXULONG64;

 int VMXONSize = 2 * VMXON_SIZE;
 BYTE* Buffer = MmAllocateContiguousMemory(VMXONSize, PhysicalMax); // Allocating a 4-KByte Contigous Memory region
 if (Buffer == NULL) {
 DbgPrint("[*] Error : Couldn't Allocate Buffer for VMXON Region.");
 return FALSE;// ntStatus = STATUS_INSUFFICIENT_RESOURCES;
 }

1
2
3
4
5
6
7
8
9
10

 UINT64 PhysicalBuffer = VirtualAddress_to_PhysicallAddress(Buffer);

 // zero-out memory
 RtlSecureZeroMemory(Buffer, VMXONSize + ALIGNMENT_PAGE_SIZE);
 UINT64 alignedPhysicalBuffer = (BYTE*)((ULONG_PTR)(PhysicalBuffer + ALIGNMENT_PAGE_SIZE
 UINT64 alignedVirtualBuffer = (BYTE*)((ULONG_PTR)(Buffer + ALIGNMENT_PAGE_SIZE

 DbgPrint("[*] Virtual allocated buffer for VMXON at %llx", Buffer);
 DbgPrint("[*] Virtual aligned allocated buffer for VMXON at %llx", alignedVirtualBuffer
 DbgPrint("[*] Aligned physical buffer allocated for VMXON at %llx", alignedPhysicalBuffer

https://rayanfam.com/topics/inside-windows-page-frame-number-part1/
https://rayanfam.com/topics/inside-windows-page-frame-number-part2/

It need not initialize the VMXON region in any other way. Software should
use a separate region for each logical processor and should not access or
modify the VMXON region of a logical processor between the execution of
VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior.

So let’s get the Revision Identifier from IA32_VMX_BASIC_MSR and write it to our
VMXON Region.

The last part is used for executing VMXON instruction.

__vmx_on is the intrinsic function for executing VMXON. The status code shows
diffrenet meanings.

Value Meaning

0 The operation succeeded.

1
The operation failed with extended status available in the VM-
instruction error field of the current VMCS.

1
2
3
4
5
6
7
8
9
10
11

 // get IA32_VMX_BASIC_MSR RevisionId

 IA32_VMX_BASIC_MSR basic = { 0 };

 basic.All = __readmsr(MSR_IA32_VMX_BASIC);

 DbgPrint("[*] MSR_IA32_VMX_BASIC (MSR 0x480) Revision Identifier %llx", basic

 //Changing Revision Identifier
 *(UINT64 *)alignedVirtualBuffer = basic.Fields.RevisionIdentifier;

1
2
3
4
5
6
7
8
9
10

 int status = __vmx_on(&alignedPhysicalBuffer);
 if (status)
 {
 DbgPrint("[*] VMXON failed with status %d\n", status);
 return FALSE;
 }

 vmState->VMXON_REGION = alignedPhysicalBuffer;

 return TRUE;

2 The operation failed without status available.

If we set the VMXON Region using VMXON and it fails then status = 1. If there isn’t any
VMCS the status =2 and if the operation was successful then status =0.

If you execute the above code twice without executing VMXOFF then you definitely
get errors.

Now, our VMXON Region is ready and we’re good to go.

Virtual-Machine Control Data Structures (VMCS)Virtual-Machine Control Data Structures (VMCS)

A logical processor uses virtual-machine control data structures (VMCSs) while it is
in VMX operation. These manage transitions into and out of VMX non-root operation
(VM entries and VM exits) as well as processor behavior in VMX non-root operation.
This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD,
and VMWRITE.

The above picture illustrates the lifecycle VMX operation on VMCS Region.

InitializingInitializing VMCS RegionVMCS Region

A VMM can (should) use different VMCS Regions so you need to set logical processor
affinity and run you initialization routine multiple times.

The location where the VMCS located is called “VMCS Region”.

VMCS Region is a

4 Kbyte (bits 11:0 must be zero)
Must be aligned to the 4KB boundary

This pointer must not set bits beyond the processor’s physical-address width
(Software can determine a processor’s physical-address width by executing CPUID
with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.)

There might be several VMCSs simultaneously in a processor but just one of them is
currently active and the VMLAUNCH, VMREAD, VMRESUME, and VMWRITE
instructions operate only on the current VMCS.

Using VMPTRLD sets the current VMCS on a logical processor.

The memory operand of the VMCLEAR instruction is also the address of a VMCS.
After execution of the instruction, that VMCS is neither active nor current on the
logical processor. If the VMCS had been current on the logical processor, the logical
processor no longer has a current VMCS.

VMPTRST is responsible to give the current VMCS pointer it stores the value
FFFFFFFFFFFFFFFFH if there is no current VMCS.

The launch state of a VMCS determines which VM-entry instruction should be used
with that VMCS. The VMLAUNCH instruction requires a VMCS whose launch state is
“clear”; the VMRESUME instruction requires a VMCS whose launch state is
“launched”. A logical processor maintains a VMCS’s launch state in the
corresponding VMCS region.

If the launch state of the current VMCS is “clear”, successful execution of the
VMLAUNCH instruction changes the launch state to “launched”.

The memory operand of the VMCLEAR instruction is the address of a VMCS. After

execution of the instruction, the launch state of that VMCS is “clear”.

There are no other ways to modify the launch state of a VMCS (it cannot be modified
using VMWRITE) and there is no direct way to discover it (it cannot be read using
VMREAD).

The following picture illustrates the contents of a VMCS Region.

The following code is responsible for allocating VMCS Region :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

BOOLEAN Allocate_VMCS_Region(IN PVirtualMachineState vmState)
{
 // at IRQL > DISPATCH_LEVEL memory allocation routines don't work
 if (KeGetCurrentIrql() > DISPATCH_LEVEL)
 KeRaiseIrqlToDpcLevel();

 PHYSICAL_ADDRESS PhysicalMax = { 0 };
 PhysicalMax.QuadPart = MAXULONG64;

 int VMCSSize = 2 * VMCS_SIZE;
 BYTE* Buffer = MmAllocateContiguousMemory(VMCSSize + ALIGNMENT_PAGE_SIZE,

 PHYSICAL_ADDRESS Highest = { 0 }, Lowest = { 0 };
 Highest.QuadPart = ~0;

 //BYTE* Buffer = MmAllocateContiguousMemorySpecifyCache(VMXONSize + ALIGNMENT_PAGE_SIZE, Lowest, Highest, Lowest, MmNonCached);

 UINT64 PhysicalBuffer = VirtualAddress_to_PhysicallAddress(Buffer);
 if (Buffer == NULL) {
 DbgPrint("[*] Error : Couldn't Allocate Buffer for VMCS Region.");
 return FALSE;// ntStatus = STATUS_INSUFFICIENT_RESOURCES;
 }
 // zero-out memory
 RtlSecureZeroMemory(Buffer, VMCSSize + ALIGNMENT_PAGE_SIZE);
 UINT64 alignedPhysicalBuffer = (BYTE*)((ULONG_PTR)(PhysicalBuffer + ALIGNMENT_PAGE_SIZE

 UINT64 alignedVirtualBuffer = (BYTE*)((ULONG_PTR)(Buffer + ALIGNMENT_PAGE_SIZE

 DbgPrint("[*] Virtual allocated buffer for VMCS at %llx", Buffer);
 DbgPrint("[*] Virtual aligned allocated buffer for VMCS at %llx", alignedVirtualBuffer
 DbgPrint("[*] Aligned physical buffer allocated for VMCS at %llx", alignedPhysicalBuffer

The above code is exactly the same as VMXON Region except for __vmx_vmptrld
instead of __vmx_on, __vmx_vmptrld is the intrinsic function for VMPTRLD
instruction.

In VMCS also we should find the Revision Identifier from MSR_IA32_VMX_BASIC
and write in VMCS Region before executing VMPTRLD.

The MSR_IA32_VMX_BASIC is defined as below.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

 // get IA32_VMX_BASIC_MSR RevisionId

 IA32_VMX_BASIC_MSR basic = { 0 };

 basic.All = __readmsr(MSR_IA32_VMX_BASIC);

 DbgPrint("[*] MSR_IA32_VMX_BASIC (MSR 0x480) Revision Identifier %llx", basic

 //Changing Revision Identifier
 *(UINT64 *)alignedVirtualBuffer = basic.Fields.RevisionIdentifier;

 int status = __vmx_vmptrld(&alignedPhysicalBuffer);
 if (status)
 {
 DbgPrint("[*] VMCS failed with status %d\n", status);
 return FALSE;
 }

 vmState->VMCS_REGION = alignedPhysicalBuffer;

 return TRUE;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

typedef union _IA32_VMX_BASIC_MSR
{
 ULONG64 All;
 struct
 {
 ULONG32 RevisionIdentifier : 31; // [0-30]
 ULONG32 Reserved1 : 1; // [31]
 ULONG32 RegionSize : 12; // [32-43]
 ULONG32 RegionClear : 1; // [44]
 ULONG32 Reserved2 : 3; // [45-47]
 ULONG32 SupportedIA64 : 1; // [48]
 ULONG32 SupportedDualMoniter : 1; // [49]
 ULONG32 MemoryType : 4; // [50-53]
 ULONG32 VmExitReport : 1; // [54]
 ULONG32 VmxCapabilityHint : 1; // [55]
 ULONG32 Reserved3 : 8; // [56-63]
 } Fields;
} IA32_VMX_BASIC_MSR, *PIA32_VMX_BASIC_MSR;

VMXOFFVMXOFF

After configuring the above regions, now its time to think about DrvClose when the
handle to the driver is no longer maintained by the user-mode application. At this
time, we should terminate VMX and free every memory that we allocated before.

The following function is responsible for executing VMXOFF then calling to
MmFreeContiguousMemory in order to free the allocated memory :

Keep in mind to convert VMXON and VMCS Regions to virtual address
because MmFreeContiguousMemory accepts VA, otherwise, it leads to a BSOD.

Ok, It’s almost done!

Testing our VMMTesting our VMM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

void Terminate_VMX(void) {

 DbgPrint("\n[*] Terminating VMX...\n");

 KAFFINITY kAffinityMask;
 for (size_t i = 0; i < ProcessorCounts; i++)
 {
 kAffinityMask = ipow(2, i);
 KeSetSystemAffinityThread(kAffinityMask);
 DbgPrint("\t\tCurrent thread is executing in %d th logical processor.", i

 __vmx_off();
 MmFreeContiguousMemory(PhysicalAddress_to_VirtualAddress(vmState[i].VMXON_REGION
 MmFreeContiguousMemory(PhysicalAddress_to_VirtualAddress(vmState[i].VMCS_REGION

 }

 DbgPrint("[*] VMX Operation turned off successfully. \n");

}

Let’s create a test case for our code, first a function for Initiating VMXON and VMCS
Regions through all logical processor.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

PVirtualMachineState vmState;
int ProcessorCounts;

PVirtualMachineState Initiate_VMX(void) {

 if (!Is_VMX_Supported())
 {
 DbgPrint("[*] VMX is not supported in this machine !");
 return NULL;
 }

 ProcessorCounts = KeQueryActiveProcessorCount(0);
 vmState = ExAllocatePoolWithTag(NonPagedPool, sizeof(VirtualMachineState)

 DbgPrint("\n===\n");

 KAFFINITY kAffinityMask;
 for (size_t i = 0; i < ProcessorCounts; i++)
 {
 kAffinityMask = ipow(2, i);
 KeSetSystemAffinityThread(kAffinityMask);
 // do st here !
 DbgPrint("\t\tCurrent thread is executing in %d th logical processor.", i

 Enable_VMX_Operation(); // Enabling VMX Operation

The above function should be called from IRP MJ CREATE so let’s modify
our DrvCreate to :

And modify DrvClose to :

Now, run the code, In the case of creating the handle (You can see that our regions
allocated successfully).

27
28
29
30
31
32
33
34
35
36
37
38

 DbgPrint("[*] VMX Operation Enabled Successfully !");

 Allocate_VMXON_Region(&vmState[i]);
 Allocate_VMCS_Region(&vmState[i]);

 DbgPrint("[*] VMCS Region is allocated at ===============> %llx", vmState
 DbgPrint("[*] VMXON Region is allocated at ===============> %llx", vmState

 DbgPrint("\n===\n");
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

NTSTATUS DrvCreate(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{

 DbgPrint("[*] DrvCreate Called !");

 if (Initiate_VMX()) {
 DbgPrint("[*] VMX Initiated Successfully.");
 }

 Irp->IoStatus.Status = STATUS_SUCCESS;
 Irp->IoStatus.Information = 0;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

NTSTATUS DrvClose(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)
{
 DbgPrint("[*] DrvClose Called !");

 // executing VMXOFF on every logical processor
 Terminate_VMX();

 Irp->IoStatus.Status = STATUS_SUCCESS;
 Irp->IoStatus.Information = 0;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;
}

And when we call CloseHandle from user mode:

Source codeSource code

The source code of this part of the tutorial is available on my GitHub.

https://github.com/SinaKarvandi/Hypervisor-From-Scratch

ConclusionConclusion

In this part we learned about different types of IOCTL Dispatching, then we see
different functions in Windows to manage our hypervisor VMM and we initialized the
VMXON Regions and VMCS Regions then we terminate them.

In the future part, we’ll focus on VMCS and different actions that can be performed
in VMCS Regions in order to control our guest software.

ReferencesReferences

[1] Intel® 64 and IA-32 architectures software developer’s manual combined volumes
3 (https://software.intel.com/en-us/articles/intel-sdm)

[2] Windows Driver Samples (https://github.com/Microsoft/Windows-driver-
samples)

[3] Driver Development Part 2: Introduction to Implementing IOCTLs
(https://www.codeproject.com/Articles/9575/Driver-Development-Part-2-
Introduction-to-Implemen)

[3] Hyperplatform (https://github.com/tandasat/HyperPlatform)

[4] PAGED_CODE macro (https://technet.microsoft.com/en-us/ff558773(v=vs.96))

[5] HVPP (https://github.com/wbenny/hvpp)

[6] HyperBone Project (https://github.com/DarthTon/HyperBone)

[7] Memory Caching Types (https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/content/wdm/ne-wdm-_memory_caching_type)

[8] What is write-back cache? (https://whatis.techtarget.com/definition/write-back)

PAGES

https://software.intel.com/en-us/articles/intel-sdm
https://github.com/Microsoft/Windows-driver-samples
https://www.codeproject.com/Articles/9575/Driver-Development-Part-2-Introduction-to-Implemen
https://github.com/tandasat/HyperPlatform
https://technet.microsoft.com/en-us/ff558773(v=vs.96)
https://github.com/wbenny/hvpp
https://github.com/DarthTon/HyperBone
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ne-wdm-_memory_caching_type
https://whatis.techtarget.com/definition/write-back

Leave a Reply

Blog Map

Tools & Scripts

Tutorials

Sinaei

Judas tree , What kind of mystery is this, that every spring, Comes with our
hearts' mourning, Judas tree, You be elate, You sing my unsang song...

! "

Published in CPU, Hypervisor and Tutorials

Creating VMM Initiating VMX Operation IRP_MJ_DEVICE_CONTROL

METHOD_BUFFERED METHOD_IN_DIRECT METHOD_NIETHER

METHOD_OUT_DIRECT VMCS VMCS Region VMM VMX Operation

VMXON VMXON Region

IRQL_EQUALITY

Really great article, I’ve been diving into HV development and this certainly helped
clarify some things. Looking forward to Part 4!

% Reply

https://twitter.com/Intel80x86
https://github.com/SinaKarvandi
https://rayanfam.com/topics/tag/creating-vmm/
https://rayanfam.com/topics/tag/initiating-vmx-operation/
https://rayanfam.com/topics/tag/irp_mj_device_control/
https://rayanfam.com/topics/tag/method_buffered/
https://rayanfam.com/topics/tag/method_in_direct/
https://rayanfam.com/topics/tag/method_niether/
https://rayanfam.com/topics/tag/method_out_direct/
https://rayanfam.com/topics/tag/vmcs/
https://rayanfam.com/topics/tag/vmcs-region/
https://rayanfam.com/topics/tag/vmm/
https://rayanfam.com/topics/tag/vmx-operation/
https://rayanfam.com/topics/tag/vmxon/
https://rayanfam.com/topics/tag/vmxon-region/
https://rayanfam.com/blog-map/
https://rayanfam.com/tools/
https://rayanfam.com/tutorials/
https://rayanfam.com/topics/author/sina/
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/tutirials/

Your email address will not be published. Required fields are marked *

Comment

Name*

Jane Doe

Email*

name@email.com

Website

http://google.com

Post Comment

Search …

Search

RECENT POSTS

Hypervisor From Scratch – Part 4: Address Translation Using Extended Page Table (EPT)

Hypervisor From Scratch – Part 3: Setting up Our First Virtual Machine

Using Intel’s Streaming SIMD Extensions 3 (MONITOR\MWAIT) As A Kernel Debugging Trick

Hypervisor From Scratch – Part 2: Entering VMX Operation

A Tour of Mount in Linux

RECENT COMMENTS

IRQL_EQUALITY on Hypervisor From Scratch – Part 3: Setting up Our First Virtual Machine

Kasbarg (Shayan) on Hypervisor From Scratch – Part 1: Basic Concepts & Configure Testing

Environment

Sinaei on Hypervisor From Scratch – Part 2: Entering VMX Operation

Carl OS on Hypervisor From Scratch – Part 1: Basic Concepts & Configure Testing Environment

Necrolis on Hypervisor From Scratch – Part 2: Entering VMX Operation

ARCHIVES

October 2018

September 2018

August 2018

July 2018

June 2018

May 2018

April 2018

March 2018

https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://rayanfam.com/topics/hypervisor-from-scratch-part-3/
https://rayanfam.com/topics/using-intels-streaming-simd-extensions-3-monitormwait-as-a-kernel-debugging-trick/
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/
https://rayanfam.com/topics/mount-in-linux/
https://rayanfam.com/topics/hypervisor-from-scratch-part-1/#comment-319
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/#comment-282
https://rayanfam.com/topics/hypervisor-from-scratch-part-1/#comment-281
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/#comment-278
https://rayanfam.com/topics/2018/10/
https://rayanfam.com/topics/2018/09/
https://rayanfam.com/topics/2018/08/
https://rayanfam.com/topics/2018/07/
https://rayanfam.com/topics/2018/06/
https://rayanfam.com/topics/2018/05/
https://rayanfam.com/topics/2018/04/
https://rayanfam.com/topics/2018/03/

January 2018

December 2017

November 2017

October 2017

September 2017

August 2017

April 2017

March 2017

CATEGORIES

.Net Framework

Android

Cisco

CPU

Debugging

Emulator

Hypervisor

Instrumentation

Kernel Mode

Linux

Malware

Network

Pentest

Programming

Ransomware

Security

https://rayanfam.com/topics/2018/01/
https://rayanfam.com/topics/2017/12/
https://rayanfam.com/topics/2017/11/
https://rayanfam.com/topics/2017/10/
https://rayanfam.com/topics/2017/09/
https://rayanfam.com/topics/2017/08/
https://rayanfam.com/topics/2017/04/
https://rayanfam.com/topics/2017/03/
https://rayanfam.com/topics/category/net-framework/
https://rayanfam.com/topics/category/android/
https://rayanfam.com/topics/category/cisco/
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/debugging/
https://rayanfam.com/topics/category/emulator/
https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/instrumentation/
https://rayanfam.com/topics/category/kernel-mode/
https://rayanfam.com/topics/category/linux/
https://rayanfam.com/topics/category/malware/
https://rayanfam.com/topics/category/network/
https://rayanfam.com/topics/category/pentest/
https://rayanfam.com/topics/category/programming/
https://rayanfam.com/topics/category/ransomware/
https://rayanfam.com/topics/category/security/

Social

Software

SysAdmin

Tutorials

User Mode

Windows

TAGS

active directory Assembly x64 Visual Studio begining cache cisco Create a virtual machine

debian debugging kernel mode debug virtual machine debug windows getting started with

pykd helloworld How to create Virtual Machine Hypervisor fundamentals Hypervisor

Tutorials Intel Virtualization Intel VMX Intel VTX Tutorial ios ipsec kernel-mode linux network
opensource Page management in Windows PFN PFN Database proxy PyKD
example PyKD sample PyKD scripts PyKD tutorial run PyKD command Setting

up Virtual Machine Monitor start systemd tunnel using CPU Virtualization VMCS VMM Implementation VMM

Tutorials VMWare and Windbg windows server x64 assembly in driver _MMPFN

Sina & Shahriar's Blog
An aggressive out-of-order blog…

The contents of this blog is licensed to the public under a Creative Commons Attribution 4.0 license.

https://rayanfam.com/topics/category/social/
https://rayanfam.com/topics/category/software/
https://rayanfam.com/topics/category/sysadmin/
https://rayanfam.com/topics/category/tutirials/
https://rayanfam.com/topics/category/user-mode/
https://rayanfam.com/topics/category/windows/
https://rayanfam.com/topics/tag/active-directory/
https://rayanfam.com/topics/tag/assembly-x64-visual-studio/
https://rayanfam.com/topics/tag/begining/
https://rayanfam.com/topics/tag/cache/
https://rayanfam.com/topics/tag/cisco/
https://rayanfam.com/topics/tag/create-a-virtual-machine/
https://rayanfam.com/topics/tag/debian/
https://rayanfam.com/topics/tag/debugging-kernel-mode/
https://rayanfam.com/topics/tag/debug-virtual-machine/
https://rayanfam.com/topics/tag/debug-windows/
https://rayanfam.com/topics/tag/getting-started-with-pykd/
https://rayanfam.com/topics/tag/helloworld/
https://rayanfam.com/topics/tag/how-to-create-virtual-machine/
https://rayanfam.com/topics/tag/hypervisor-fundamentals/
https://rayanfam.com/topics/tag/hypervisor-tutorials/
https://rayanfam.com/topics/tag/intel-virtualization/
https://rayanfam.com/topics/tag/intel-vmx/
https://rayanfam.com/topics/tag/intel-vtx-tutorial/
https://rayanfam.com/topics/tag/ios/
https://rayanfam.com/topics/tag/ipsec/
https://rayanfam.com/topics/tag/kernel-mode/
https://rayanfam.com/topics/tag/linux/
https://rayanfam.com/topics/tag/network/
https://rayanfam.com/topics/tag/opensource/
https://rayanfam.com/topics/tag/page-management-in-windows/
https://rayanfam.com/topics/tag/pfn/
https://rayanfam.com/topics/tag/pfn-database/
https://rayanfam.com/topics/tag/proxy/
https://rayanfam.com/topics/tag/pykd-example/
https://rayanfam.com/topics/tag/pykd-sample/
https://rayanfam.com/topics/tag/pykd-scripts/
https://rayanfam.com/topics/tag/pykd-tutorial/
https://rayanfam.com/topics/tag/run-pykd-command/
https://rayanfam.com/topics/tag/setting-up-virtual-machine-monitor/
https://rayanfam.com/topics/tag/start/
https://rayanfam.com/topics/tag/systemd/
https://rayanfam.com/topics/tag/tunnel/
https://rayanfam.com/topics/tag/using-cpu-virtualization/
https://rayanfam.com/topics/tag/vmcs/
https://rayanfam.com/topics/tag/vmm-implementation/
https://rayanfam.com/topics/tag/vmm-tutorials/
https://rayanfam.com/topics/tag/vmware-and-windbg/
https://rayanfam.com/topics/tag/windows-server/
https://rayanfam.com/topics/tag/x64-assembly-in-driver/
https://rayanfam.com/topics/tag/_mmpfn/
https://rayanfam.com/
https://creativecommons.org/licenses/by/4.0/

