] corkami / pocs

Branch: master~v pocs / collisions / README.md Find file = Copy path

TL;DR getting an MD5 collision of these 2 images is now(*) trivial and instant.

I'M OKAY WITH THE |

eveNTs THAT ARe |
UNFOLDING
CURRENTLY.

MDs5

From Wikipedia, the free encyclopedia

THAT'S OKAY,THINGS
ARe GoiING TO Be

The MD5 message-digest algorithm is a widely used hash
function producing a 128-bit hash value. Although MD5 was

initially designed to be used as a cryptographic hash function,
it has been found to suffer from extensive vulnerabilities. It

can still be used as a checksum to verifv data intearitv but d
Don't play with fire, don't rely on MD5.

(*) Colliding any pair of files has been possible for many years, but it takes several hours each time, with no shortcut. This
page provide tricks specific to file formats and pre-computed collision prefixes to make collision instant. git clone . Run
Script. Done.

Introduction

This part of the repository is focused on hash collisions exploitation for MD5 and SHA1.
This is a collaboration with Marc Stevens.

The goal of this page is to explore extensively existing attacks - and show on the way how weak MD5 is (instant collisions
of any JPG, PNG, PDF, MP4, PE...) - and also explore in detail common file formats to determine how they can be exploited
with present or with future attacks.

Indeed, the same file format trick can be used on several hashes (the same JPG tricks were used for MD5, malicious SHA-
1and SHAT), as long as the collisions follow the same byte patterns.

This document is not about new attacks (the most recent one was documented in 2012), but about new forms of
exploitations of existing attacks.

Status

Current status - as of December 2018 - of known attacks:
¢ get a file to get another file's hash or a given hash: impossible

o it's still even not practical with MD2.

o works for simpler hashes(*)
e get 2 different files with the same MD5: instant
o examples: 1+« 2

¢ make 2 arbitrary files get the same MD5: a few hours (72 hours.core)

https://github.com/corkami/pocs
https://github.com/corkami/pocs/tree/master/collisions
https://github.com/corkami
https://github.com/corkami/pocs
https://github.com/corkami/pocs/find/master
https://github.com/corkami/pocs/blob/master/collisions/scripts/png.py
https://en.wikipedia.org/wiki/MD5
http://gunshowcomic.com/648
https://marc-stevens.nl/research/
https://archive.org/stream/pocorgtfo14#page/n49/mode/1up
https://malicioussha1.github.io/
http://shattered.io/
https://eprint.iacr.org/2008/089.pdf
https://github.com/corkami/pocs/blob/master/collisions/examples/single-ipc1.bin
https://github.com/corkami/pocs/blob/master/collisions/examples/single-ipc2.bin

o examples: 1+ 2

¢ make 2 arbitrary files of specific file formats (PNG, JPG, PE...) get the same MD5: instant
o read below

e get two different files with the same SHA1: 6500 years.core

o get two different PDFs with the same SHA-1 to show a different picture: instant (the prefixes are already
computed)

(*) example with crypt - thanks Sven!

>>> import crypt

>>> crypt.crypt("5duD&66", "br')
'broken0z4KxMc'

>>> crypt.crypt("0!>"',%$", "br")
'broken0z4KxMc'

Attacks

MD5 and SHA1 work with blocks of 64 bytes.

If 2 contents A & B have the same hash, then appending the same contents C to both will keep the same hash.
hash(A) = hash(B) —> hash(A + C) = hash(B + C)

Collisions work by inserting at a block boundary a number of computed collision blocks that depends on what came before
in the file. These collision blocks are very random-looking with some minor differences (that follow a specific pattern for
each attack) and they will introduce tiny differences while eventually getting hashes the same value after these blocks.

These differences are abused to craft valid files with specific properties.
File formats also work top-down, and most of them work by byte-level chunks.

Some 'comment' chunks can be inserted to align file chunks to block boundaries, to align specific structures to collision
blocks differences, to hide the rest of the collision blocks randomness from the file parsers, and to hide otherwise valid
content from the parser (so that it will see another content).

These 'comment' chunks are often not officially real comments: they are just used as data containers that are ignored by
the parser (for example, PNG chunks with a lowercase-starting ID are ancillary, not critical).

Most of the time, a difference in the collision blocks is used to modify the length of a comment chunk, which is typically
declared just before the data of this chunk: in the gap between the smaller and the longer version of this chunk, another
comment chunk is declared to jump over one file's content A . After this file content A, just append another file content
B.

Ju‘.-umod)
[&5) Cfore
o f{?)idfatmﬁf
[&'F) Tl
mp”t”ffun
- Pesygy

header

---- comment 4
variable
length

-
q

COmIment -- -4 -

[

-
- e m = = -

1 1

a content 1
Phenga
[# U”’Diag. ri{]‘,(”.
5

ting

-----q-(ln-

COTNIMON file 1 file 2
layout

Since file formats usually define a terminator that will make parsers stop after it, A will terminate parsing, which will make
the appended content B ignored.

https://github.com/corkami/pocs/blob/master/collisions/examples/single-cpc1.bin
https://github.com/corkami/pocs/blob/master/collisions/examples/single-cpc2.bin
https://github.com/nneonneo/sha1collider
https://docs.python.org/3/library/crypt.html
https://twitter.com/svblxyz
https://github.com/corkami/pocs/blob/master/collisions/pics/layout.png

So typically at least 2 comments are needed:

1. alignment
2. hide collision blocks

3. hide one file content (for re-usable collisions)

These common properties of file formats make it possible - they are not typically seen as weaknesses, but they can be
detected or normalized out:

e dummy chunks - used as comments
e more than 1 comment

¢ huge comments (lengths: 64b for MP4, 32b for PNG -> trivial collisions. 16b for JPG, 8b for GIF -> no generic collision
for GIF, limited for JPG)

e store any data in a comment (UTF8 could be enforced)
¢ store anything after the terminator (usually used only for malicious purposes)
¢ no integrity check. CRC32 in PNG are usually ignored, which would prevent PNG re-usable collisions otherwise.

e flat structure: ASN.1 defines parent structure with the length of all the enclosed substructures, which prevents these
constructs: you'd need to abuse a length, but also the length of the parent.

¢ put a comment before the header - this makes generic re-usable collisions possible.

Identical prefix

1. Define an arbitrary prefix - its content and length don't matter.
2. The prefix is padded to the next 64-byte block.

3. Collision block(s) are computed depending on the prefix and appended. Both sides are very random. The differences
are predetermined by the attack.

4. After this[these] block[s], the hash value is the same despite the file differences.

5. Any arbitrary identical suffix can be added.

Prefix Prefix

Collision A % Collision B

Suffix Suffix

Both files are almost identical (their content have only a few bits of differences)
Exploitation:
Bundle 2 contents, then either:

¢ Data exploit: run code that checks for differences and displays one or the other (typically trivial since differences are
known in advance).

e Structure exploit: exploit file structure (typically, the length of a comment) to hide one content or show the other
(depends on the file format and its parsers).

Two files with this structure:

Prefix Prefix
Collision A % Collision B
A = A

B B

will show either A or B.

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

PREFIX
7%

QUFFIR

FastColl (MD5)
Final version in 2009.

e time: a few seconds of computation
¢ space: 2 blocks

¢ differences: no control before, no control after. FastColl difference mask:

¢ exploitation: hard

The differences aren't near the start/end of the blocks, so it's very hard to exploit since you don't control any nearby byte.
A potential solution is to brute-force the surrounding bytes - cf PoOCGTFO 14:10.

Examples:

With an empty prefix:

00: 37 75 C1 F1-C4 A7 5A E7-9C E@ DE 7A-5B 10 80 26 7ul:—°Ztfa|z[~C&
10: 02 AB D9 39-C9 6C 5F 02-12 C2 7F DA-CD @D A3 B0 ©%!9pl @tro ="
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 (3 99 1D 1ig-=<Bu2{notvij}Oe
30: CD 91 (8 45-E6 6E FD 3D-C7 BB 61 52-3E F4 E@ 38 =zlEun2=|qaR>(a8

40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20 I<aif|le£60@63@i

50: A4 09 2D FB-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E fio-v§- ofle=])Ya
60: 39 89 9E F6-79 46 OF E6-8B 85 (5 EF-DE 42 4F 46 9é&%+yFfuiatn BOF
70: (2 78 75 9D-8B 65 F4 50-EA 21 C5 59-18 62 FF 7B - xu¥ie[PQ!4Y1b {

e MD5: febc446ee3a831ee010f33ac9clb602c
e SHA256: c5dd2ef7c74cd2e80a0fd16f1dd6955c626b59def888be734219d48da6b9dbdd

@0: 37 75 C1 F1-C4 A7 5A E7-9C E@ DE 7A-5B 10 80 26 7ul:z—°Ztfa|z[~(C&
10: 02 AB D9 B9-C9 6C 5F 02-12 C2 7F DA-CD @D A3 BO o%ld pl_@tta =lG
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 43 9A 1D 1i¢-=RG2{notv§jcle
30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 D2-3E F4 E0 38 =elEpn2=|qay>(a8

40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20 I<aif|t+£60@63@i
50: A4 09 2D 7B-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E fio—{§: o7fle])Ya

60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE C2 4E 46 9éPIs+yF]‘uié-|—n ENF
70: (C2 78 75 9D-8B 65 F4 50-EA 21 C5 D9-18 62 FF 7B Txu¥iefPQ!-|—| tb {

e MD5: febc446ee3a831ee010f33ac9clb602c
e SHA256: e27cf3073¢c704d0665da42d597d4d20131013204eecb6372a5bd60aeddd5d670

Other examples, with an identical prefix: 1 «— 2

Variant: there is a single-block MD5 collision but it takes five weeks of computation.

UniColl (MD5)

https://github.com/corkami/pocs/blob/master/collisions/pics/identical.png
https://www.win.tue.nl/hashclash/
https://github.com/angea/pocorgtfo#0x14
https://github.com/corkami/pocs/blob/master/collisions/examples/fastcoll1.bin
https://github.com/corkami/pocs/blob/master/collisions/examples/fastcoll2.bin
https://marc-stevens.nl/research/md5-1block-collision/
https://github.com/corkami/pocs/blob/master/collisions/unicoll.md

Documented in 2012, implemented in 2017

UniColl lets you control a few bytes in the collision blocks, before and after the first difference, which makes it an identical-
prefix collision with some controllable differences, almost like a chosen prefix collision. This is very handy, and even better
the difference can be very predictable: in the case of m2+= 278 (a.k.a. N=1 / m2 9 in HashClash poc_no.sh script), the
difference is +1 on the 9th byte, which makes it very exploitable, as you can even think about the collision in your head: the
9th character of that sentence will be replaced with the next one: @ replaced by 1, a replaced by b ..

¢ time: a few minutes (depends on the amount of byte you want to control)
e space: 2 blocks
¢ differences:

oo BD oo
R

¢ exploitation: very easy - controlled bytes before and after the difference, and the difference is predictable. The only
restrictions are alignment and that you 'only' control 10 bytes after the difference.

Examples with N=1 and 20 bytes of set text in the collision blocks:

00: 55 6E 69 43-6F 6C 6C 20-31 20 70 72-65 66 69 78 UniColl 1 prefix
10: 20 32 30 62-F5 48 34 B9-3B 1C @1 9F-C8 6B E6 44 20bJH4;Lof LkuD
20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E BO A6 88 m+1:clj0>wM|zni:2é
30: 04 05 FB 39-33 21 64 BF-@D A4 FE E2-A6 9D 83 36 #&v93!d-,fimI2¥46
40: 4B 14 D7 F2-47 53 84 BA-12 2D 4F BB-83 78 6C 70 Kf{=GSa|:-0qax1p
50: (6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C |}6!=+YUafse]W_e<
60: E1 3F B0 DB-E8 B4 AA BO-D5 56 22 AF-B9 04 26 FC R7:if®]—pv"»d e&n
70: 9F D2 @C 00-86 C8 ED DE-85 7F @3 7B-05 28 D7 OF fo &lo Jacw{s (|

00: 55 6E 69 43-6F 6C 6C 20-31 21 70 72-65 66 69 78 UniColl 1!prefix
10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44 20bJH4d ;LofLkuD
20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88 m+1:cl0>wM|lzni:2é
30: 04 05 FB 39-33 21 64 BF-@D A4 FE E2-A6 9D 83 36 #&v93!d- fiml2¥46
40: 4B 14 D7 F2-47 53 84 BA-12 2C 4F BB-83 78 6C 70 KJ=GSa|+,07ax1p
50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C }6!=+YUafse]W_e<
60: E1 3F BO DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC R7:8]—pv" »ie&n
70: O9F D2 @C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 OF fo Alg Jace{s({=

UniColl has less control than chosen prefix, but it's much faster especially since it takes only 2 blocks.

It was used in the Google CTF 2018, where the frequency of a certificate serial changes and limitations on the lengths
prevented the use of chosen prefix collisions.

Shattered (SHA1)

Documented in 2013, computed in 2017.

e time: 6500 years.CPU and 110 year.GPU
e space: 2 blocks

o differences:

. DD ?? 2?7 7?72 7?7

or
?? ?? 2?2 DD ..

¢ exploitation: medium. The differences are right at the start of the collision blocks. So no control before and after the
length: PNG stores its length before the chunk type, so it won't work. However it will work with JP2 files when they use
the JFIF form (the same as JPG), and likely MP4 and other atom/box formats if you use long lengths on 64bits (in this
case, they're placed after the atom type).

The difference between collision blocks of each side is this Xor mask:

0c 00 00 02 co 00 00 10 b4 00 00 1c 3c 00 00 04
bc 00 00 1la 20 00 00 10 24 00 00 1lc ec 00 00 14
Oc 00 00 02 cO 00 00 10 b4 00 00 1c 2c 00 00 04
bc 00 00 18 b0 00 00 10 00 00 00 0c b8 00 00 10

https://www.cwi.nl/system/files/PhD-Thesis-Marc-Stevens-Attacks-on-Hash-Functions-and-Applications.pdf#page=199
https://github.com/cr-marcstevens/hashclash/blob/95c2619a8078990056beb7aaa59104021714ee3c/scripts/poc_no.sh
https://github.com/cr-marcstevens/hashclash#create-you-own-identical-prefix-collision
https://github.com/cr-marcstevens/hashclash/blob/master/scripts/poc_no.sh#L30
https://github.com/google/google-ctf/tree/master/2018/finals/crypto-hrefin
http://shattered.io/
https://marc-stevens.nl/research/papers/EC13-S.pdf
http://shattered.io/

File 1

000: 2550 4446 2d31 2e33 0a25 e2e3 cfd3 0ala
010: 0a31 2030 206f 626a 0a3c 3c2f 5769 6474
020: 6820 3220 3020 522f 4865 6967 6874 2033
030: 2030 2052 2f54 7970 6520 3420 3020 522f
040: 5375 6274 7970 6520 3520 3020 522f 4669
050: 6c74 6572 2036 2030 2052 2f43 6f6c 672
5370 6163 6520 3720 3020 522f 4c65 6e67
070: 7468 2038 2030 2052 2f42 6974 7350 6572
080: 436f 6d70 6f6e 656e 7420 383e 3ela 7374
090: 7265 616d Oaff d8ff

comment length: 0x017f éam
0a0: 2069 7320 6465 6164 is

0b0: 0923 3975 9c39 blal c63c 4c97 elff

%PDF-1.3.%...... PDF header
.1 0 obj.<</Widt
h 2 0 R/Height 3
0 R/Type 4 0 R/
Subtype 5 0 R/Fi
lter 6 0 R/Color
Space 7 0 R/Leng
th 8 0 R/BitsPer
Component 8>>.st
$SHA-17)

.S

image object
declaration

Identical
prefix

JPG header and
comment declaration

File 2

2550 4446 2d31 2e33 0a25 e2e3
0a31 2030 206f 626a 0a3c 3c2f
6820 3220 3020 522f 4865 6967
2030 2052 2f54 7970 6520 3420
5375 6274 7970 6520 3520 3020
6c74 6572 2036 2030 2052 2f43
5370 6163 6520 3720 3020 522f
7468 2038 2030 2052 2f42 6974
436f 6d70 6f6e 656e 7420 383e

cfd3 0ala
5769 6474
6874 2033
3020 522f
522f 4669
6f6c 6£72
4c65 6e67
7350 6572
3ela 7374

#PDF-1.3.%......
.1 0 obj.<</Widt
h 2 0 R/Height 3
0 R/Type 4 0 R/
Subtype 5 0 R/Fi
1lter 6 0 R/Color
Space 7 0 R/Leng
th 8 0 R/BitsPer
Component 8>>.st
$SHA-1

0cO: 7f{A6 dc93 abb6 7e01 3b02 9aaa 1db2

f7265 616d Oaff d8ff comment length: 0x0173 sam
2069 7320 6465 6164 is
0923 3975 9c39 blal c63c 4c97 elff f .#9u.9...<L

7346 dc91 66b6 7ell 8£02 9ab6

a 0d0: 45ca 67d6 88c7 £84b 8cdc 791f e02b f9ca 67cc a8c7 £85b a84c 7903
‘9 '&VJ 0e0: 14f8 6dbl 6909 01c5 6b45 c153 Oafe 18£8 6db3 a909 01d5 df45
‘C'LJ ¢ 0f0: 6038 e972 722f e7ad 728f 0e49 04e0 dc38 e96a c22f e7b bce0 46d2
— _‘O 100: 3057 0fe9 d413 98ab el2e f5bc 942b 3c57 Ofeb Z8bb 552e f5a0 a82b e331
Q e 110: 42a4 802d 98b5 d70f 2a33 2ec3 7fac fead 8037 d71f 0e33 2edf 93ac 3500
O 120: e74d dcOf 2ccl a874 cdOc 7830 5a21 eb4d dc0d, aB864 790c 782c 7621 5660
130: 6130 9789 606b dObf 3f98 cda8 0446 dd30 9771 dOaf 3f98 cda4 bc46 29bl
F same hash at this point ’
230: 0000 fffe 012d 0000 0000 0000 0000 ffe0 0000 fffe 012d 0000 0000 0000 0000 ffed
240: 0010 4a46 4946 0001 0101 0048 0048 0000 0010 4a46 4946 JoGmments chain® 0000
3a0: e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff e9d6 d667 b0 7e65 1299 e39d 39c0 cTff
o 3b0: d92d 2d2d 2dff e000 104a 4649 4600 0101 d92d 2d2d 2dff e000 104a 4649 4600 0101
EE 3c0: 0100 4800 4800 00ff db00 4300 0101 0101 0100 4800 4800 00ff db00 4300 0101 0101
= J U‘nrm(l/
wn 4e0: 4bld 97f7 7£39 fcd7 f1ff d90a 656e 6473 K.. ends 4b14 97£7 7£39 fcd7 f1ff d90a 656e 6473

4f0: 7472 6561 6d0a 656e 646f 626a 0ala 3220
500: 3020 6£f62 6al0a 380a 656e 646f 626a 0ala

tream. endob]

0 obj.8. endobJ
.startxref. ISOJ
'//EDF

PDF footer
840: 3e0a 0a73 7461 7274 7872 6566 0a31 3830

850: 380a 2525 454f 460a 380a 2525 454f 460a

3020 6£62 6a0a 380a 656e 646f

L3e0a 0a73 7461 7274 7872 6566

626a 0ala

f7472 6561 6d0a 656e 646f 626a 0ala 3220

0a31 3830

tream.endobj. .2
0 obj.8.endobj..

>..startxref.180
8. %4EOF .

-.H.H.. 1 first image data

(ignored)

second image data

Examples: PoC||GTFO 0x18 is using the computed SHA1 prefixes, re-using the image directly from PDFLaTeX source (see
article 18:10), but also checking the value of the prefixes via JavaScript in the HTML page (the file is polyglot, ZIP HTML

and PDF).

Chosen-prefix collisions
They allow to collide any content. They don't exist for SHA-1 yet.

A S B

Collision A 3 Collision B

1. take 2 arbitrary prefixes

2. pad the shortest to be as long as the longest. both are padded to the next block - minus 12 bytes

¢ these 12 bytes of random data will be added on both sides to randomize the birthday search

3. X near-collision blocks will be computed and appended.
The fewer blocks, the longer the computation.

Ex: 400 kHours for 1 block. 72 hours.cores for 9 blocks with HashClash.

R C(\m\\?ﬂ\—

RS

R

Chosen prefix collisions are almighty, but they can take a long time just for a pair of files.

HashClash (MD5)
Final version in 2009.
It took 3 hours on 24 cores.

Examples: let's collide yes and no .

yes :

https://github.com/corkami/pocs/blob/master/collisions/pics/shattered.png
https://github.com/angea/pocorgtfo#0x18
https://archive.org/stream/pocorgtfo18#page/n62/mode/1up
https://www.win.tue.nl/hashclash/SingleBlock/
https://github.com/cr-marcstevens/hashclash
https://github.com/corkami/pocs/blob/master/collisions/pics/chosen.png
https://github.com/cr-marcstevens/hashclash
https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/

000:
010:
020:
030:

040:
050:
060:
070:

080:
090:
0AQ:
0BO:

0Co:
0D0O:
0EOQ:
OF0:

100:
110:
120:
130:

140:
150:
160:
170:

180:
190:
1A0:
1B0:

1Co:
1D0:
1E0Q:
1F0:

no :

000:
010:
020:
030:

040:
050:
060:
070:

080:
090:
0AQ:
0BO:

0Co:
0D0O:
0EQ:
0F0:

100:
110:
120:
130:

140:
150:
160:
170:

180:
190:
1A0:

79
31
98
97

D5
04
85
BA

09
3F
1F
c5

E7
A7
BE
0A

BA
1E
3E
B8

82
FD
c5
01

B8
2D
El
44

Cc7
1D
EF
EB

6E
8A
FE
E6

D5
04
85
BA

09
3F
1F
c5

E7
A7
BE
0A

BA
1E
3E
B8

82
FD
c5
01

B8
2D
El

65
C1
17
25

F1
9F
B5

9C
80
oD
12

BF
5B
7A
DD

32
7D
42
D2

7E
3D
3C
8E

6F

19
4C

F1
9F
B5

9C
80
oD
12

BF
5B
7A
DD

32
7D
42

73
D9
CA
A6

54
19
9A
9C

BB
4C
77
7D

07
49
FF
DE

BF
70
Al
F2

9C
64
2C
95

DB
17
2B
E4

E6
AB
1C
9D

0A
4D
D7
08

54
19
9A
9C

BB
4C
77
7D

07
49
FF
DE

BF
70
Al
F2

9C
64
2C
95

DB
17
2B

OA-3D
30-45
E3-A2
FB-00

CD-CA
E8-92
88-D8
Fo-78

A9-45
06-0F
5F-55
4F-E0Q

2A-CF
4A-32
BE-4E
1F-40

F9-96
D7-14
6E-FF
9E-DD

5E-58
CF-59
F7-D5
76-8D

AE-E8
34-4E
86-0C
23-14

17-1A
F1-B4
C7-16
F6-90

E5-5F
34-B3
CF-6F
A3-00

CD-CA
E8-92
88-D8
Fo-78

A9-45
06-0F
5F-55
4F-EQ

2A-CF
4A-32
BE-4E
1F-40

F9-96
D7-14
6E-FF
9E-DD

5E-58
CF-59
F7-D5
76-8D

AE-E8
34-4E
86-0C

62
FB
6B
00

Al
C3
A5
31

89
Cc7
AA
5E

1B
A4
71
B4

80
1F
D9
53

42
D1
24
oD

DC
A8
94
7C

93

5A
A3

DO
75
92
00

Al
C3
A5
31

89
Cc7
AA
5E

1B
A4
71
B4

80
1F
D9
53

42
D1
24
oD

DC
A8
94

84
BE
8E
00

42
AA
OE
8F

BA
D9

F2

66
3A
AE
F4

E3
55
90
F7

1E
96
F5
58

3A
21
2A
16

c5
F1
1F
CcD

83
59
03
00

42
AA
OE
8F

BA
D9

F2

66
3A
AE
F4

E3
55
90
F7

1E
96
F5
58

3A
21
2A

11-01
1E-71
3D-44
00-49

90-7F
19-43
FB-CD
D1-14

A8-03
19-09
07-4C
23-C5

39-8C
07-61
18-E2
8F-9C

06-96
4D-EC
AD-F6
88-19

3B-94
74-14
EB-BE
FB-50

83-7A
98-61
F6-D6
B8-84

EE-59
D9-86
83-60
08-65

01-9B
46-56
9C-91
00-8D

90-7F
19-43
FB-CD
D1-14

A8-03
19-09
07-4C
23-C5

39-8C
07-61
18-E2
8F-9C

06-96
4D-EC
AD-F6
88-19

3B-94
74-14
EB-BE
FB-50

83-7A
98-61
F6-D6

75
Fo
A9
08

9D
31
66
5F

E6
D3
24
07

Fo
26
DO
50

F3
11
A0
73

CF
B3
54
23

c8
1A
A4
90

70
48
EC
D5

4D
97
AA
B6

9D
31
66
5F

E6
D3
24
07

Fo
26
Do
50

F3
11
A0
73

CF
B3
54
23

c8
1A
A4

D3
0A
8F
09

3D
1A
9A
3E

Co
DA
8B
61

8E
64
86
5C

B9
58
AD
85

5B
oC
3E
70

D5
65
81
8B

91
75
5C
5A

55
EF
A5
4E

3D
1A
9A
3E

Co
DA
8B
61

8E
64
86
5C

B9
58
AD
85

5B
oC
3E
70

D5
65
81

4D-EB
63-75
F2-0E
33-F0

9A-67
DB-DA
DA-4F
B9-0F

31-A0
14-FD
13-0A
E4-80

7E-75
EA-6B
4F-20
78-DD

7C-77
59-92
OE-C6
39-AA

54-73
AF-11
12-B0
3A-BD

0F-08
DA-FC
B5-2B
EQ-A1

26-4E
77-6E
FE-CA
4C-2E

06-61
6C-4A
DA-56
47-FF

9A-67
DB-DA
DA-4F
B9-0F

31-A0
14-FD
13-0A
E4-80

7E-75
EA-6B
4F-20
78-DD

7C-77
59-92
OE-CA
39-AA

54-73
AF-11
12-70
3A-BD

0F-08
DA-FC
B5-2B

80
A8
67
62

C4
96
20
9F

54
CB
54
91

25
83
00
CcD

2D
45
D6
9B

5F
1C
24
ED

90
9B
0B
A7

9D
FE
17
Co6

AB
07
92
AF

C4
96
20
9F

54
CB
54
91

25
83
00
CcD

2D
45
D6
9B

5F
1C
24
ED

90
9B
2B

93
30
96
C4

1B
01
8A
3E

D6
39
A2
B2

22
A2
30
72

EB
E1l
88
EQ

A8
F9
67
BE

1D
A4
E9
BD

c7
98
oC
BE

88
90
C1
7A

1B
01
8A
3E

D6
39
B2
B2

22
A2
30
72

EB
E1l
88
EQ

A8
F9
67
BE

1D
A4
E9

DE
AA
48
E8

oF
54
AA
19

26
84
BC
13

1D
8D
26
89

25
33
12
8D

4A
47
3F
AC

99
BA
37
27

7C
84
74
54

11
cc
04
3C

oF
54
A9
19

26
84
BC
13

1D
8D
22
89

25
33
12
8D

4A
47
3F
AC

99
BA
37

yes@=ba<oullM6Cs ||
11 @Evd ag=Bcuio-
yednokA=D-A=Ng(H
us%s2av IBo3=b—%

pT=LiBEa¥=0g—x
*f LOE |~ C1-J [GoT
af UeNnv=Ff0 0 &-
[rE=x1A_>d >4

ofq-Eé| iwul1aT &
2¢Lax|H 1ol 92598
vow_U-zeL$iligred
+:}0ar2#t+ azCaf!

Ty ekl fOi=Arus" o
9; 1120 »a&d0kasi
44 dNq«rrldo o&
8a Ive] (A£P\x]=ré

| < aCrat=d] |w-5%
AVpJvUMo<XYEER3
>nin JEi+dinkrés
3 t=ff S=é1sa9-¢ai

é1£7°XBa; 6L[Ts_¢J
2[dLY0te | o»<eG
tz,~p$) 64 T>1ii$97?
ef ovirxvpP#p:lody

3 2l«dg: 8z L pBE-D
-}2dNé 'ya-e ¢
RB+390%+ rfili +707
DyrE#9 | = &Efaiod

[~us-oteYpasN¥||
<—>=/zi-| fiJ dHuwnmya
<t f=zva o\mksot
6A¥+E(=BefZL. HT

nogo_lae¢Muaalé«
&-M4|uYFVun1J-Ef
mfLofvia-N VAL
uLaa 1{NG »z<

pT=LiBEa¥=0g—x
*f LOE |~ C1-J(GeT
af Uenv=Ff0 0 &
[rE=x1A0_>d #f>1

ofq-Eé| iwul1aT &
2CLaxH 1ol 92593
vow_U-zeL$ilgT
+e Y00 2#4e az Caf!

Ty ekt fOi=Arus" o
9; 1J2A: »a&d0kadi
44 dNq«rrl&o o
8a Ive] (A£P\x] =ré

|7« GCrat<d| |w—65%
AVpJHvUMo<XYEER3
>nin JEi+dinlpes
3 t=fg S=é1sa9-¢ai

é£7°XBa; 6L[Ts_¢J
2[ddy0t9 | o»eG
4z,=¢$) 64 T>2p$g?
ef ovirxvprap:dodk

3 2P «dg: az L Fx}:nE«)O
-}2dNé ya-e ¢
RB+896%+ pfili{ ++07

1BO: 44 D2 E4 23-14 7C 16 B8-84 90 8B E@-Al A7 BD 27 DyS#f|=qaEiaied’

1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C |~vpe-0teYpesN¥|
1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84 o=%+| [+!&Huwnmyé
1E@: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 54 n<i|=Zva o\mlzoT
1FQ: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E (6 BE 54 bA¥+EG=BefZL.HT

Exploitations

Identical prefix collisions is usually seen as (very) limited, but chosen prefix is time consuming.

Another approach is to craft re-usable prefixes via either identical-prefix attack such as UniColl - or chosen prefix to
overcome some limitations - but re-use that prefix pair in combinations with 2 payloads like a classic identical prefix
attack.

Once the prefix pair has been computed, it makes colliding 2 contents instant: it's just a matter of massaging file data
(according to specific file formats) so that it fits the file formats specifications and the precomputed prefix requirements.

Standard strategy
Classic collisions of 2 valid files with the same file type.

JPG

JPEG FFILE INTERCHANGE FORMAT

SEGMENTS = FIELDS —— VALUES
START OF IMAGE i

APPLICATIOND
(DEFAULT HEADER)
o T de
© 1 2 3 456 7 89 ABCDEF CUNTTIZATON TABLE
@00: FF D8[FF E0 00 10 .J .F .I .F 00 01 01 01 00 48 = —
010: 00 43 00 0O[FF DB 00 43 00 61 o1 o1 o1 o1 o1 61
o20; o1 o1 o1 o1 o1 o1 61 o1 e1 o1 o1 o1 ol o1 o1 61
©30: 61 ©1 ©1 61 @1 o1 1 61 el o1 1 e1 el o1 e1 e1
Ga0; o1 o1 of ol of o1 ol o1 ol o1 ol o1 ol of o1 o1 START OF FRAVE

©50: o1 o1 o1 e1 e1 e1 e1 e1 e1|FF DB 00 43 01 e1 e1
@60: ©1 @1 01 ©1 ©1 61 61 e1 @1 e1 e1 o1 el e1 o1 e1
e70: o1 o1 01 1 o1 o1 o1 61 61 ol o1 o1 el ol el el
68: o1 ol o1 61 o1 ol o1 61 6l ol o1 61 el ol el e
@%e: o1 o1 o1 o1 o1 ol ol e1 el el el el el ol [FF (o

0A0: 00 11 03 00 62 00 06 03 01 22 00 02 11 @1 03 11 HUFFMAN TABLE
@Bo: 01[FF C4 00 15 00 01 01 00 00 00 00 00 00 00 00
0CO: 00 00 00 00 00 00 00 09 ‘FF C4 00 19 10 01 00 02
@De: 03 00 00 @0 00 00 00 00 00 00 @0 00 00 00 06 03
@E0: 38 88 B6[FF C4 00 15 01 01 01 00 00 00 00 00 00
@F0: 00 00 00 @0 00 00 @0 @0 07 OA[FF C4 00 1C 11 00 HUFFMAR TABLE ©

HUFFMAN TABLE

100: 01 03 05 00 60 00 00 00 00 00 00 00 00 00 00 08
110: @0 07 B8 09 38 39 76 78 [FF DA @0 OC 03 01 00 02 - f
120: 11 03 11 00 3F @086 F7 E7 1D A9 16 CA 77 36 DO . HUFFMAN TABLE
130: 14 F7 41 DC 5A 8E FB 31 19 26 5D C4 2A F4 5C 81 -

140: 7B DB 06 84 A® 75 17[FF D9
IMAGE DATA ¢
ENROPYO0ED SEGHENT 3

ANGE ALBERTINI: :
BY http://pics.corkami.com END OF IMAGE -

JPEG IS THE ENCODING STANDARD, JFIF IS THE FILE FORMAT

.. START OF SCAN

Theoretical limitations and workarounds:

e the Application segment should in theory right after the Start of Image marker. In practice, this is not necessary, so
our collision can be generic: the only limitation is the size of the smallest image.

e acomment's length is stored on 2 bytes, so it's limited to 65536 bytes. To jump over another image, its Entropy
Coded Segment needs to be split to scans smaller than this, either by storing the image as progressive, either by
using JPEGTran and custom scans definition.

So an MD5 collision of 2 arbitrary JPGs is instant, and needs no chosen-prefix collision, just UniColl.

With the script:

21:07:35.65>jpg.py Ange.jpg Marc.jpg

21:07:35.75>

https://raw.githubusercontent.com/corkami/pics/master/binary/JPG.png
https://github.com/corkami/pocs/blob/master/collisions/scripts/jpg.py

Collision blocks

BLACK ALPSIEEMN

= generate one file from the other.

Where the magic happens: random stuff + mask ’

xor mask

Exploiting Hash Collisions
A

ge Albertini

PNG

PORTABLE NETWORK GRAPHICS

[OMom

/

/
/

@ 123456789 ABCDEF /

©0: 89 .P .N .G @D @A 1A ©A[@@ 00 00 @D .I .H .D .R
1e: 00 00 00 01 05 02 00 00 00 94 82 83
20: E3/00 00 00 15 .I .D .A .T 08 1D 01 GA 8@ F5 FF
30: 00 FF 00 00 00 FF 00 @0 00 FF OF FB 02 FE E9 32

40: 61 E5:00 00 00 00 .1 .E .N .D AE 42 60 82 DATA

level / dict.

checksum

DEFLATE| 1ast block

PIXELS[Line filter

END

block type
data length
llength

e
ANGE ALBERTINI i
http://www.corkami.com <
FIELDS VALUES
SGNATURE e i
\r\n \xia \n
size ©x0000000D
/ id THDR
/
/ height 0x00000001
/ HEADER bpp oxes
/ color ox02RGB
/ compression 0x0oDEFLATE
filter ox60
interlace ox00
CRC32 ©0x948283E3
size 0x00000015
id IDAT
B[window size 000001000
method 0beee100o EFLATE

0boeo11161
ox0810 % 31 = @
ebeeeasoe1 " [NAL
0000000017 Al
ox000A

BXFFF5

oxee NONE

FF 00 00 00 FF 00 @0 00 FF

adler32
CRC32

size
id
CRC32

OXOEFBO2FE
OXE93261E5

0x00000000
IEND
OxAE426082

Theoretical limitations and workarounds:

e PNG uses CRC32 at the end of its chunks, which would prevent the use of collision blocks, but in practice they're

ignored.

¢ the image meta data (dimensions, color space...) are stored in the IHDR chunk, which should in theory be right after
the signature (ie, before any potential comment), so it would mean that we can only precompute collisions of images
with the same meta data. However, that chunk can actually be after a comment block, so we can put the collision data
before the header, which enables to collide any pair of PNG with a single precomputation.

Since a PNG chunk has a length on 4 bytes, there's no need to modify the structure of either file: we can jump over a

whole image in one go.

We can insert as many discarded chunks as we want, so we can add one for alignment, then one which length will be

altered by a UniColl. so the length willbe 60 75 and @1 75.

So an MD5 collision of 2 arbitrary PNG images is instant, with no prerequisite (no computation, just some minor file

changes), and needs no chosen-prefix collision, just UniColl.

With the script:

19:27:04.79>png.py nintendo.png sega.png

https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.jpg
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.jpg
https://raw.githubusercontent.com/corkami/pics/master/binary/PNG.png
https://github.com/corkami/pocs/blob/master/collisions/scripts/png.py

19:27:04.87>

Sega’

GIF

(GRAPHICS INTERCHANGE ORMAT

FIELDS VALUES
TF

signature G
version "89a"

width 3
height 1
flags A1 (01 010 @ ee1)

/' LOCAL SCREEN

/ bpp 241
@ 1234567 89ABCDEF/ DESCR'PTOR GCT size 2n(141)
6: .G .1 .F .8 .9 .2[63 66 61 60 AL 00 60 FF 66 00 Global Color Table
10: 60 FF 60 00 00 FF FF FF FF[1C 00 00 60 00 03 00 FF 00 80 00 FF 00
20: o1 20 00 02 02 44 54 00[3B \ 00 00 FF FF FF FF

separator 2C
width height 3 1

MAGE winsoum see

per LZW code

| DESCRPTOR G s

ANGE ALBERTINI iz

http://pics.corkami.com

block data ©101 616 ee1 eeo 160
end #2 #1 #09 start
block end]

TRAILER ~ wouer

THE GIF WAS CREATED BY COMPUSERVE IN 1987.
IT'S PALETTE BASED: EACH BLOCK IS LIMTED TO 256 COLORS.
IT USES THE LEMPEL-ZIV-WELCH ALGORITHM, WHICH WAS PATENTED UNTIL 2004.

GIF is tricky:

e it stores its meta data in the header before any comment is possible, so there can't be a generic prefix for all GIF files.
« if the file has a global palette, it is also stored before a comment is possible too.

¢ its comment chunks are limited to a single byte in length, so a maximum of 256 bytes!

However, the comment chunks follow a peculiar structure: it's a chain of <length:1> <data:length> until a null length is
defined. So it makes any non-null byte a valid 'jump forward'. Which makes it suitable to be used with FastColl, as shown in
PoC||GTFO 14:11.

So at least, even if we can't have a generic prefix, we can collide any pair of GIF of same metadata (dimensions, palette)
and we only need a second of FastColl to compute its prefix.

Now the problem is that we can't jump over a whole image like PNG or over a big structure like JPG.

A possible workaround is to massage the compressed data or to chunk the image in tiny areas like in the case of the GIF
Hashquine, but this is not optimal.

Another idea that works generically is that the image data is also stored using this length data sequence structure: so if
we take 2 GIFs with no animation, we only have to:

¢ normalize the palette
¢ set the first frame duration to the maximum

e craft a comment that will jump to the start of the first frame data, so that the comment will sled over the image data as
a comment, and end the same way: until a null length is encountered. Then the parser will meet the next frame, and
display it.

With a minor setup (only a few hundred bytes of overhead), we can sled over any GIF image and work around the 256
bytes limitation. This idea was suggested by Marc, and it's brilliant!

So in the end, the current GIF limitations for instant MD5 collisions are:

https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.png
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.png
https://raw.githubusercontent.com/corkami/pics/master/binary/GIF.png
https://github.com/angea/pocorgtfo#0x14

e no animation
¢ the images have to be normalized to the same palette - see gifsicle ——use-colormap web
¢ the images have to be the same dimensions

e after 11 minutes, both files will show the same image

Pics by KidMoGraph

Portable Executable

PORTABLE EXECUTABLE meemsmng:

FIELDS VALUES
DOSHEADER emagic vz
IT'S A BINARY e_1fanew 0x40 - PE Header
PE HEADER Signature PE\O\O
. A Machine 0x14c [intel 386]
0 1 ' IT'S A MODERN BINARY Characteristics 2 [executable
00 .11 .2 S agie T 0x108 [326]
S AddressOfEntryPoint 0x140
gig R T T T4e g8 B0 BB - - ImageBase 0x400000
¢.PLEeeee4c el e SectionAlignment 1
850: 62 ©0;0B 01 OPT’OHAL HEADER FileAlignment 1
860: 46 81 08 60 EXECUTABLE INFORMATION ~ majorsubsystemversion 4 [NT 4 or later]
87e: 60 08 40 06 61 00 00 00 81 B0 08 60 SizeofImage 0x160
e8e: 04 88 sizeofHeaders 0x140
890: 60 81 00 80 48 01 00 60 83 08 Subsystem 3 [cL1]
140:[B8 2A €0 00 00 (3 -
! X8 ASSEMBLY ~ EQUIVALENT C CODE

MNEXE CODE moy eon, iz

The Portable Executable has a peculiar structure:

¢ the old DOS header is almost useless, and points to the next structure, the PE header. The DOS headers has no other
role. DOS headers can be exchanged between executables.

¢ the DOS header has to be at offset 0, and has a fixed length of a full block, and the pointer is at the end of the
structure, beyond UniColl's reach: so only Chosen Prefix collision is useful to collide PE files this way.

¢ The PE header and what follows defines the whole file.
So the strategy is:

1. the PE header can be moved down to leave room for collision blocks after the DOS header.

2. The DOS header can be exploited (via chosen prefix collisions) to point to 2 different offsets, where 2 different PE
headers will be moved.

3. The sections can be put next to each other, after the D0S/Collisions/Headerl/Header2 structure. You just need to
apply a delta to the offsets of the 2 section tables.

This means that it's possible to instantly collide any pair of PE executables. Even if they use different subsystems or
architecture.

While executables collisions is usually trivial via any loader, this kind of exploitation here is transparent: the code is
identical and loaded at the same address.

Examples: tweakPNG.exe (GUI) «— fastcoll.exe (CLI)

https://www.lcdf.org/gifsicle/
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.gif
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.gif
https://www.kidmograph.com/
https://raw.githubusercontent.com/corkami/pics/master/binary/PE.png
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.exe
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.exe

collisionl.e

collision2

aw.win.tue.nl/hash

&

File Edit Insert Options Tools Help

Chunk Length CRC Attributes Contents

1lisionl.exe

MP4 and others

This format's container is a sequence of Length Type Value chunks called Atoms. The length is a 32 bit big-endian and
covers itself, the type and the value, so the minimum normal length is 8 (the type is a 4 ASCII characters string).

If the length is null, then the atom takes the rest of the file - such as jp2c atoms in JP2 files. If it's 1, then the Type is
followed by a 64bit length, changing the atom to Type Length Value , making it compatible with other collisions like
Shattered.

Some atoms contain other atoms: in this cases, they're called boxes. That's why this otherwise unnamed structure is
called "atom/box".

This "atom/box" format used in MP4 is actually a derivate of Apple Quicktime, and is used by many other formats (JP2,
HEIF, F4V).

The first atom type is usually ftyp , which enables to differentiate the actual file format.
The format is quite permissive: just chain free atoms, abuse one's length with UniColl, then jump over the first payload.

For MP4 files, the only thing to add is to adjust the stco (Sample Table - Chunk Offsets) or co64 (the 64 bit equivalent)
tables, since they are absolute(!) offsets pointing to the mdat movie data - and they are actually enforced!

This gives a script that instantly collides any arbitrary video - and as mentioned, it may work on other format than MP4.

https://github.com/corkami/pocs/blob/master/collisions/pics/pe.png
http://www.ftyps.com/
https://github.com/corkami/pocs/blob/master/collisions/scripts/mp4.py

& collisionl.mp4 - VLC media player — [m} > & collision2.mp4 - VLC media playe — [m]

Media Playback Audio Video Subtitle Tools View Help

00:29 —) 04:37 00:25 03:43

P wa W oo |FE 0 B g e P [m]om] [m1 (=] o]

i

Examples (videos by KidMoGraph):
e 32b lengths (standard) collision1.mp4 «— collision2.mp4
o

e 64b lengths collisionl1.mp4 «— collision|2.mp4

Examples (videos by KidMoGraph):

» 32b lengths (standard) collision1.mp4 «— collision2 mp4

0:00 / 0:00

0:00/0:00 : 0:00/0:00
————————————————————————

JPEG2000

JPEG2000 files usually start with the Atom/Box structure like MP4, then the last atom jp2c is typically until the end of the
file (null length), then from this point on it follows the JFIF structure, like JPEG (starting with FF 4F as a segment marker).

The pure-JFIF form is also tolerated, in which case collision is like JPEG: Shattered-compatible, but with comments limited
to 64Kb.

https://github.com/corkami/pocs/blob/master/collisions/pics/mp4.png
https://www.kidmograph.com/
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.mp4
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.mp4
https://github.com/corkami/pocs/blob/master/collisions/examples/collisionl1.mp4
https://github.com/corkami/pocs/blob/master/collisions/examples/collisionl2.mp4
https://github.com/corkami/pocs/blob/master/collisions/pics/mp4-pocs.png

On the other hand, if you manipulate JPEG2000 files with the Atom/Box, you don't have this limitation.

As mentioned before, if you're trying to collide this structure and if there are more restriction - for example starting with a
free atom is not tolerated by some format - then you can compute another UniColl prefix pairs specific to this format:
JPEG2000 seems to enforcea 'jP ' atom first before the usual ftyp , but besides, that's the only restriction: there's no

need to relocate anything.

So the resulting script is even simpler!

File Edit Image Options View Help

ob |_o'}, ‘ 0 I@

EEHEE&® X

collision2jp2 - IfanVi... —] b4
Eile Edit [mage Optiocns Yiew Help

EHRE& X

= il
[y @I =) ‘

200 x 250 x 24 BPP 2/10 100% 171.74KB/1

336x 384 x 24 BPP 1/10 100 % 171.74 KB / 378.04 KB

Examples: collision1.jp2 «— collision2.jp2

PDF

PORTABLE DOCUMENT FORMAT ANGE ALBERTINI
HEADER s

PARSING
XPOF-1.7
star

tovA

1

STRERM PARRMETERS:

<« [Length 5055
strean

18 480 Td
“(Hello Hor1a!)T)
€

eeeeeeeee

8088 1
Bosea n

oot 19 % CONTENTS
TRALER »
collision

Shattered exploitation was not a PDF trick, but a JPG trick in a PDF.

It only enabled a PDF to contain a JPG-compressed object that could have 2 different contents. Both PDFs needed to be

totally identical beside.

With MD5 (and other collision patterns), we can do PDF collisions at document level, with no restrictions at all on either

file!

https://github.com/uclouvain/openjpeg/blob/d2205ba2ee78faeea659263383446c4472b1f9df/src/bin/wx/OPJViewer/source/imagjpeg2000.cpp#L100-L111
https://github.com/corkami/pocs/blob/master/collisions/scripts/jp2.py
https://github.com/corkami/pocs/blob/master/collisions/pics/jp2.png
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.jp2
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.jp2
https://raw.githubusercontent.com/corkami/pics/master/binary/PDF.png

PDF has a very different structure from other file formats. It uses object numbers and references to define a tree. The
whole document depends on the Root element.

@ catalog#1 pages#2)~ (page#3 Hello World!

This (valid) PDF

%PDF-1.

1 0 obj<</Pages 2 @ R>>endobj

2 0 obj<</Kids[3 @ R]/Count 1>>endobj
3 0 obj<</Parent 2 @ R>>endobj
trailer <</Root 1 @ R>>

is equivalent to:

%PDF-1.

11 @ obj<</Pages 12 @ R>>endobj

12 0 obj<</Kids[13 @ R]/Count 1>>endobj
13 @ obj<</Parent 12 @ R>>endobj
trailer <</Root 11 0 R>>

Tricks:

e Storing unused objects in a PDF is tolerated.

¢ Skipping any object numbers is also OK. There's even an official way to skip numbers in the XREF table.

So storing 2 document trees in the same file is OK. We just need to make the root object refer to either root object of both
documents.

So we just need to take 2 documents, renumber objects and references so that there is no overlap, craft a collision so that
the element number referenced as Root object can be changed while keeping the same hash value, which is a perfect fit

for UniColl with N=1 , and adjust the XREF table accordingly.
Hello World!

pages#2 page#3

catalog#1
catalog#11 pages#12)~ (page#l3 Bye World!

This way, we can safely collide any pair of PDFs, no matter the page numbers, dimensions, images...
comments
PDF can store foreign data in two ways:

e as aline comment, in which the only forbidden characters are newline (\r and \n). This can be used inside a
dictionary object, to modify for example an object reference, via UniColl. So this is a valid PDF object even if it
contains binary collision blocks - just retry until you have no newline characters:

1 0 obj

<< /Type /Catalog /MD5_is /REALLY_dead_now__ /Pages 2 @ R

ss¥reoes MLXs_~] peXimpesst8 Hml. . . 1pddaFZo>vBAp 1 dogs vooj pedZMc2aUs] | LyNr5 r+BLy 60R-ii4a (02
>>

endobj
e as a stream object, in which case any data is possible, but since we're inside an object, we can't alter the whole PDF
structure, so it requires a chosen prefix collision to modify the structure outside the containing stream object.
colliding text

The first case makes it possible to highlight the beauty of UniColl, a collision where differences are predictable, so you can
write poetry over colliding data - thanks Jurph!

Rather than modifying the structure of the document and fool parsers, we'll just use collision blocks directly to produce
directly text, with alternate reading!

https://github.com/corkami/pocs/blob/master/collisions/pics/pdf.svg
https://github.com/corkami/pocs/blob/master/collisions/pics/pdfcollision.svg
https://github.com/Jurph/word-decrementer

A true cryptographic artistic creation :)

e poeMD5 A

\'

Now he hash MD5,
No enemy cares!

Only he gave

the shards.
Can’t be owned &
his true gold,
like One Frail,
sound as fold.

A

e poeMD5B

\Y

Now he hath MD5,
No enemy dares!

Only he have

the shares.
Can’t be pwned &
his true hold,
like One Grail,
sound as gold.

(Note | screwed up with Adobe compatibility, but that's my fault, not UniColl's)
colliding document structure

Whether you use UniColl as inline comment or Chosen Prefix in a dummy stream object, the strategy is similar: shuffle
objects numbers around, then make Root object point to different objects, so unlike Shattered, this means instant collision
of any arbitrary pair of PDF, at document level.

A useful trick is that mutool clean output is reliably predictable, so it can be used to normalize PDFs as input, and fix
your merged PDF while keeping the important parts of the file unmodified. MuTool doesn't discard bogus key/values -
unless asked, and keep them in the same order, so using fake dictionary entries such as /MD5_is /REALLY_dead_now__ is
perfect to align things predictably without needing another kind of comments. However it won't keep comments in
dictionaries (so no inline-comment trick)

An easy way to do the object-shuffling operation without hassle is just to merge both PDF files via mutool merge then
split the /Pages objectin 2.

To make room for this object, just merge in front of the 2 documents a dummy PDF.

Optionally, create a fake reference to the dangling array to prevent garbage collection from deleting the second set of
pages.

Example: with this script, it takes less than a second to collide the 2 public PDF papers like Spectre and Meltdown:

Examples: spectre.pdf «— meltdown.pdf

https://github.com/corkami/pocs/blob/master/collisions/examples/poeMD5_A.pdf
https://github.com/corkami/pocs/blob/master/collisions/examples/poeMD5_B.pdf
https://mupdf.com/docs/manual-mutool-clean.html
https://github.com/corkami/pocs/blob/master/collisions/scripts/pdf.py
https://github.com/corkami/pocs/blob/master/collisions/examples/pdf.log
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.pdf
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.pdf

‘E]

File Edit View Window Help

Home Tools colisiont.pdf % @ Sign In
B EaQ n ax- - CEE
“
MeldOW &) jicion2 pat - Adobe Acrobst Readier DC - o x
MoiizLiy Home Home Tools Tools colision2... x| @) Sign In
‘Werne|
Pail
- D 119 612% - e M Share
RS 8 B Q [& svare]
ey Spectre Attacks: Exploiting Speculative Execution *
Abstract Paul Kocher!, Jann Hom?, Anders Fogh?, Daniel Genkin®,

Daniel Gruss’, Wener Haas?, Mike Hambury”, Moritz Lipp®,
Stefan Mangaré®, Thomas Prescher’, Mickeel Schwasz?, Yuval Yaroms
v ent (uwpaukochercom), * Google Project Zero,
36 DATA Advanced Anabytics, * Univrsity of Pensyivania and University of Maryland,
® Graz Univershy of Technology, © Cyberus Technology,
* Rambus, Cryplogeaphy Research Division, * Universty of Adelaids nd Datas

“The secury of computer 3
on memory isolaon, <.,

Absraci

Athcls of th later type inchide microarchioctul atacks

B8 o picitng cache iming [5, 0, 45, 2, 55, 69, 74], branch

prdictcn hisory [1,2], 4] oropen

ows [56]. Sftwas-based techoiues have alzo bsn

ued Bjor
imercal CPU valuss [65).

‘Severalmissourhistur design Eshaigues have facliaed

One such

ssssd path. When the s from memory,

o the CPU checks the s intal gues. 1f the

oess was wiong, the CPU discards the incomect speculative
cuton by riering the rogier sute bk (o i s

xac A OW Resuls
S and In tis paper, we analyze the secury Implicaions of such v
850x1100in < >

Possible extension: chain UniColl blocks to also keep pairs of the various non-critical objects that can be referenced in the
Root object - such as Outlines , Names , AcroForm and Additional Actions (AA) - in the original source files.

in PDFLaTeX

The previous techniques work with just a pair of PDF files, but it's also possible to do it directly from TeX sources via
specific PDFTeX operators.

You can define objects directly - including dummy key and values for alignments - and define empty objects to reserve
some object slots by including this at the very start of your TeX sources:

% set PDF version low to prevent stream XREF
\pdfminorversion=3

\begingroup

% disable compression to keep alignments
\pdfcompresslevel=0\relax

\immediate
\pdfobj{<<
/Type /Catalog
% cool alignment padding
/MD5_1is /REALLY_dead_now__

% the first reference number should be on offset 0x49, so 2 will be changed to 3 by UniColl
/Pages 2 0 R

% now padding so that the collision blocks (ends at @xC@) are covered
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

% with an extra character to be replaced by a return char
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0

>>}

% the original catalog of the shifted doc
\immediate\pdfobj{<</Type/Pages/Count 1/Kids[8 @ R]>>}

% the original catalog of the host doc
\immediate\pdfobj{<</Type/Pages/Count 1/Kids[33 @ R]>>}

% now we need to reserve PDF Objects so that there is no overlap
\newcount\objcount

% the host size (+3 for spare object slots) - 1
% putting a higher margin will just work, and XREF can have huge gaps
\objcount=25
\loop
\message{\the\objcount}
\advance \objcount -1

https://github.com/corkami/pocs/blob/master/collisions/pics/pdf.png
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page=81
http://texdoc.net/texmf-dist/doc/pdftex/manual/pdftex-a.pdf

\immediate\pdfobj{<<>>} % just an empty object

\ifnum \objcount>0
\repeat

\endgroup

Don't forget to normalize PDFLaTeX output - with mutool for example - if needed: PDFLaTeX is hard to get reproducible
builds across distributions - you may even want to hook the time on execution to get the exact hash if required.

Uncommon strategies
Collisions are usually about 2 valid files of the same type.

MultiColls: multiple collisions chain

Nothing prevents to chain several collision blocks, and have more than 2 contents with the same hash value. An example
of that are Hashquines - that shows their own MD5 value. The POCGTFO 14 file contains 609 FastColl collisions, to do that
through 2 file types in the same file.

Validity

A different strategy would be to kill the file type to bypass scanning as a corrupted file. Just overwriting the magic
signature will be enough. Appending both files (as valid or invalid) with a format that doesn't need to be at offset O
(archive, like ZIP/RAR/...) would reveal another file type.

This enables polyglot collisions without using a Chosen prefix collision:

1. use UniColl to enable or disable a magic signature, for example a PNG:

2. append a ZIP archive

While technically both files are a valid ZIP, since most parser return the first file type found and they start scanning at
offset 0, they will see a different file type.

Examples:
Internet Protocol Datagram RFC 791
L 1 1 1 1 1 1]
Source Destination Version D other then verson 4
Type of Service
0 high reliability O Routine "
O high throughput 0 Priority f,ﬁs%?y?ﬁ';'; " Offset
DOl low delay E Immediate
Protocol O Flash Override ent
O CRITIC/ECP
ELEE DR ool | D1 s bitintentionally left blarik
O other O Network Control \eniifier

Length Header Length Data
Print legibly and press hard. You are making up to 255 copies.

Time to Live ptions

Header C|

for more info, check IPv4 specifications at http://www.ietf.org/rfc/rfc0791.txt —> inva | |d

PolyColls: collisions of different file types
It's also possible to have both side of a collision with different types to lower suspicion:
Attack scenario:

1. send holiday.jpg
2. get it whitelisted
3.send evil.exe , which has the same MD5.

Some examples of polycoll layouts:

https://github.com/angea/pocorgtfo#0x14
https://github.com/corkami/pocs/blob/master/collisions/examples/png-valid.png
https://github.com/corkami/pocs/blob/master/collisions/examples/png-invalid.png

PDF JPG

#PDF-1.... FF D8
stream FF FE xx

endstream

PDF/JPG polycoll

PE PNG

MZ \X89PNG\r\n
e_lfanew cHUNK

PE
<table>
¢sectionsy <sections>

PE/PNG polycoll

Portable Executable - JPG
Since a PE header is usually smaller than 0x500 bytes, it's a perfect fit for a JPG comment:

1. start with DOS/JPG headers

2. JPEG-comment jumps over PE Header
3. Put the full JPG image

4. Put the whole PE specifications

Once again, the collision is instant.

Examples: fastcoll.exe «— Marc.jpg

PDF - PNG

Similarly, it's possible to collide for example arbitrary PDF and PNG files with no restriction on either side. This is instant,
re-usable and generic.

Examples: Hello.pdf «— 1x1.png

Use cases

Better discard MD5 altogether, because file introspection is just too time-consuming and too risky!

https://github.com/corkami/pocs/blob/master/collisions/pics/pdf-jpg.png
https://github.com/corkami/pocs/blob/master/collisions/pics/pe-png.png
https://github.com/corkami/pocs/blob/master/collisions/examples/jpg-pe.exe
https://github.com/corkami/pocs/blob/master/collisions/examples/jpg-pe.jpg
https://github.com/corkami/pocs/blob/master/collisions/examples/png-pdf.pdf
https://github.com/corkami/pocs/blob/master/collisions/examples/png-pdf.png

Gotta collide 'em all!

Another use of instant, re-usable and generic collisions would be to hide any file of a given type - say PNG - behind
dummy files (or the same file every time) - which is actually just by concatenating it to the same prefix after stripping the
signature - you could even do that at library level!

From a strict parsing perspective, all your files will show the same content, and the evil images would be revealed as a file
with the same MD5 as previously collected.

Let's take 2 files:

the \ isnot (the [] \ I= /..@..

Father Son
s 1S N e
) God 0
d’*‘? §‘ ./\ \//
N\ |is| /€ N\ !/
thgpfiic:ly ||\t1|
Trinity _ JavaScript

and collide them with the same PNG.

They now show the same dummy image, and they're absolutely identical until the 2nd image at file level!

Their evil payload is hidden behind a file with the same MD5 respectively.

Incriminating files

Another use case for collisions is to hide something incriminating inside something innocent, but desirable: if the only
thing to collect evidence is comparing weak hashes, then you can't deny that you don't have the other file (showing
incriminating content but hiding innocent content).

Softwares typically focus on (quick) parsing, not on detailed file analysis.

an image showing different previews under different tabs of EnCase Forensic

https://github.com/corkami/pocs/blob/master/collisions/pics/trinity.png
https://github.com/corkami/pocs/blob/master/collisions/pics/javascript.png
https://github.com/corkami/pocs/blob/master/collisions/examples/gcea1.png
https://github.com/corkami/pocs/blob/master/collisions/examples/gcea2.png
https://github.com/corkami/pocs/blob/master/collisions/pics/encase.png

Failures

Not all formats can have generic prefixes that can be re-used: if some kind of data holder can't be inserted between the
magic signature and the standard headers that are critical and specific to each file, then generic collisions are not possible.

Of course, one might still turn the old files into a new one, and even use code to branch out to 2 different payloads, but it's
more like porting payloads than colliding file structure.

ELF

EXECUTABLE anp LINKABLE [~ORMAT

ANGE ALBERTINI (g5

http://www.corkami.com

=5
i

FIELDS VALUES
me@nux:~$./mini e_ident
EI_MAG BX7F

me@nux:~$ echo $?

s VELF"
EI_CLASS, EI_DATA 1ELFCLASS3Z jELFDATAZLS

42
ELF HEADER
e_machine 3EM_386
e 1 2 3 456 7 8 9 ABCDEF IDENTIFY AS AN ELF TYPE e_version {EV_CURRENT
88: 7F .E .L .F 01 el SPECIFY THE ARCHITECTURE
18: 02 80 03 00 81 68 00 00 40 00 60 00 e_phoff 2x8000840
20: 34 09 o1 20 e_ehsize %6034
48:101 00 60 06 00 00 08 00 06 80 66 08 e_phnum 0061
58: 78 00 60 08 o5 09 60 08 o type T iR
FF:
60:[BB 2A 60 06 06 BB 01 06 80 00 CD 80 PROGRAM HEADER Pp-offset 8
TABLE p_paddr 8x8060806
EXECUTON MFORmATION P11 1852 00060070
M”\“ p_flags SPF_RIPF_X
X86 ASSEMBLY EQUIVALENT C CODE

mov ebx, 42
mov eax, SC_EXIT'
int 80h

CODE

v
~return 42;

The ELF header is required at offset O and contains critical information such as 32b/64b, endianness and ABI right from
the beginning, so it's impossible to have a universal prefix then collision blocks before critical parameters that are specific

to the original file.

Mach-0

MACH-0OBUECT FILE FORMAT

ANGE ALBERTINI {3 :’

http://www.corkami.com

FIELDS VALUES
magic oxFEEDFACE "H-MAGIC
me@mac:~$./mini cputype 7 CPU_TYPE_1386
me@nac:~5 echo $? MACHHEADER uaibeype scrvsimrvesssen
42 IDENTFY AS A MACH-0 TYPE iletype 2 MHEXECUTE
SPECFY THE ARCHTECTURE nemds 5
sizeofcmds ox88
© 123456789 ABCDEF [
@0: CE FA ED FE 07 00 00 00 03 00 00 00 02 00 00 00 cmd X 1
10: 02 00 00 00 88 00 00 00 01 @0 00 00 cmdsize ox38
20: 38 00 00 00 vmaddr]
o 60 06 60 00 Co 00 00 00 60 60 60 60 SEGMENT commad — wmeize oxco
40: Co 00 00 00 @5 00 00 00 MAPPING INFORMATION fileoff)
50: 0560 00 00 50 60 00 00 01 00 00 00 filesize oxco
60: 10 00 00 00 initprot skl
70: end 5 LC_UNIXTHREAD
8e: BO 00 00 00 cmdsize ox50
THREAD commo — gpisiz
. EXECUTION INFORMATION / L
BO:[6A 2A B3 01 00 00 00 83 EC 04 (D 80 count ox1e
THREAD STATE eip oxbo
VALUES TO BE LOADED I THE PROCESSOR
push 42
SC_EXIT
mov eax,
sub esp, 4STAKAOUSTIEN]
int exgeystem call ~exit(42);

Mach-0O don't even start with the same magic for 32b (feedface) and 64b (feedfacf). Soon after, there is the number
and size of commands (such as segment definition, symtab, version,...).

Like ELF, re-usable collisions are not possible.

Java Class

https://raw.githubusercontent.com/corkami/pics/master/binary/ELF.png
https://raw.githubusercontent.com/corkami/pics/master/binary/MachO.png

JAVA CLASS e menssm g

FELDS VALUES

Lo 45.3 » Java 1.8.2

@ 12 3 456 7 8 9 ABCDEF

E

CONSTANT POOL

ee0: CA FE BA BE @0 63 60 20 eo 0867 ee 62701 60 o4
@10: .m .i .n .i"87 60 0481 80 18 .j .a .v .a ./ .1

@20: .a .n.g./ .0 .b.j.e.c.t"el ee @4 .m.a .i

DATA USED BY THE CODE

@30: .n"81 60 84 .C .o .d .e"81 60 16 .(.[.L .j .a

e40: .v.a ./ .l .a.n.g./.5.t.r.i.n.g.;.)
o0[ee o1 00 89 00

050: .V(0o @1 68 81 @

MNL.CLASS

public class mini {

public static void main(String[])

}
}

METHODS

Right from the start magic are located the versions (which can be troublesome) but the constant pool count which is quite
specific to each file, so no universal collisions for all files.

However, many files still have a common version and we can pad the shortest constant pool to the longuest count. First,
insert a UTFS8 literal to align information, then declare another one with its length abused by a UniColl (the length is stored
on 16 bytes as big endian).

However this will require code manipulation since all pool indexes will be shifted.

Instant MD5 re-usable collisions of Java Class should be possible, but require code analysis and modification.

TAR

TL;DR No re-usable collision for TAR files, no other strategy than Chosen Prefix.

1 APE AR CHIVE oz mee e

$ tar -xOf hello.tar helle.txt
Hello World!

12345678 9ABCDEF FIELDS VALUES
file name hello.txt
eoee: .h e .1 .1 .0 .. .t .x .t file mode 2000644
owner user ID 0000764
o060 : © .0 .6 .0 .6 .4 .400 .0 .0 .0 .0 group user ID 0001040
ee7e: .7 .6 .4 00 .6 .0 .6 .1 .6 .4 .0 60 .0 .8 .0 .0 file size 0000013
eese: .0 .0 .6 .0 .0 .1 .500 .1 .2 .4.2.0 .0 .1.0 timestam 2014-10-16 20:41
0098: .5 .3 .2 00 .6 .1 .4 .6 .3 .6 08 20 .0 FlLE HEADER Ch.ﬂmump 014636 \8\x20
0100: .S .t.a.ree .o .0 .A.n.g.e type Flag
magic ustar\xee
o120: A d.m.in s version 00"
e030: .t .r .a .t .0 .r .5 owner user name Ange
. owner group mame Administrators
©200::.H .e .1 .1 .020 .W .0 .r .1 .d.! oA O
CONTENTS contents Hello World!\n
2800:]

TAR WAS INITIALLY DESIGNED FOR TAPE DRIVES, IN 1974

- NO COMPRESSION, BLOCK ALIGNED

- NUMERIC VALUES ARE STORED IN OCTAL, ENCODED IN ASCI
TAR IS OFTEN COMBINED WITH GZIP, BZIPZ OR LZMA.

THE TAR FORMAT EVOLVED:

THIS EXAMPLE IS A "USTAR" FILE, AS DEFINED IN 1988

Tape Archives are a sequence of concatenated header and file contents, all aligned to 512 bytes.
There's no central structure to the whole file. So no global header or comment of any kind to abuse.

A trick would be to start a dummy file of variable length, but the length is always at the same offset, which is not
compatible with UniColl, which means only Chosen Prefix collisions is useful here.

ZIP

https://raw.githubusercontent.com/corkami/pics/master/binary/CLASS.png
https://raw.githubusercontent.com/corkami/pics/master/binary/TAR.png

TL;DR There's no generic re-usable collision for ZIP. It should be possible to collide 2 files in 2h.core (36 times faster than
Chosen Prefix)

description value

~$ unzip simple.zip
Archive: simple.zip
extracting: hello.txt

- 10cal file header signature PK\x03\x04

. version needed to extract 10 (default value)
Local File Header comression nethos)
~$ cat hello.txt archived file information cre

Hello World!

compressed size
uncompressed size

© 12345678 9ABCDEF
! file data fite aata Hello karlat\n
@0: .P .K 03 04 OA 00 00 00 DD DD o kil
10: 14 7D @D 60 0@ 00 @D 60 60 00 Re
20:.1.1.0. .W.o.r.l.d.loA.P .Kol62 5 central file header signature PK\XOL\x02
30: OA 00 version needed to extract 10 (default value)
40: 00 00 00 @D 00 00 00 09 00 . cre-32 @x7014DDDD
po 00 00 00 00! 16 "1 il T il Central Directory compressed size oxeD
60: .x .t .P .K 05 06 01 00 37 00 . list of local headers uncompressed size oxen
70: 00 00 2B 00 00 00 3 file name length 9
N relative offset of local header 0 memp-
SIMPLE.ZIP file name i e
end of central dir signature PK\x@5\x@6
file1 Local File Header 1 total number of entries in
. <file data> E the central directory
nd of

. size of the central directory @x37
file N Local File Header N ¢

<file data> Central Directory - o < o —s

‘?ﬁ

Central Directory:
relative offset 1——
<file name>
relative offset N

<file name>

start = End z:fz::tral Directory: Z I P ARCH IVE ANEE ALBERTINI&
http://www.corkami.com

ZIP archives are a sandwich of 3 layers (at least). First comes the files' content (sequence of Local File Header
structures, one per archived file or directory), then some index (again, a sequence of Central Directory), then a single
structure that points to this index (End 0f Central Directory).

The order of these layers can't be moved around. Some parser only need the file content's structure, but that's not a
correct way to parse and it can be abused.

Because of this required order, there's no generic prefix that could help for any collision.
non generic approach

Another approach could be to just merge both archives, with their merged layers, and using UniColl - but with N=2, which
introduces a difference on the 4th byte - to kill the magic signature of the End of Central Directory .

This means one could collide 2 arbitrary ZIP with a single UniColl and 24 bytes of set prefix.

A typical End of Central Directory, which is 22 bytes if the comment is empty:

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK.........uuuss
10: 0000 0000 0000 i

If we use this as prefix (padd the prefix to 16 bits) for UniColl and N=2 , the difference is on the 4th byte, killing the magic
.P .K 05 06 by changing it predictably to .P .K 05 86

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK.....:eveseans
10: 0000 0000 0000 2121 eb66 cf9d db@l 83bb!!.f......
20: 2888 4c4l e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]1J3;a..
30: 0029 94af 4168 2517 Obbc b841 cbf2 9587 .)..Ah%....A....
40: e438 0043 6390 279d 7c9e al@le e476 4c36 .8.Cc.'.|....vL6
50: 527f blf4 653e d866 f98d 7278 5324 @bd5 R...e>.f..rxSs$..
60: b31ld ef6d d5d6 1163 5a2e a8a5 21bf eab4d ...m...cZ...!...

70: c59c 028e a913 f6b7 0036 c93f 5092 a628 6.7P.. (
00: 504b 0586 0000 0000 0000 0000 0000 0000 PK............u.
10: 0000 0000 0000 2121 eb66 cfld db@l 83bb!!.f......

20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]3;a..
30: 0029 94af 4168 251f @bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 00c3 6390 279d 7c9e alle e476 4c36 .8..c.'.|....vL6
50: 527f blf4 653e d866 f98d 72f8 5324 @bd5 R...e>.f..r.Ss$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6af 0036 c93f 5092 a628 6.7P.. (

This is not generic at all, but much faster than Chosen-Prefix collision:

https://raw.githubusercontent.com/corkami/pics/master/binary/ZIP.png

real 12m23.993s
user 112m24.072s
sys 2m@.194s

A problem is that some parsers still parse ZIP files upside-down even if they should be parsed bottom-up: a way to make
sure that both files are properly parsed is to chain 2 UniColl blocks, to enable/disable each End of Central Directory .

To prevent ZIP parsers from complaining about unused space, one can abuse Extra Fields , file commentsin Central
Directory and archive commentsin End of Central Directory .

yll” File Header

‘ Extra header

File Header
Extra header

Central Dir
entry

comment

Central Dir
entry
comment
~End of CD -~
\\-\c,‘\oo comment

O

/7

A
comment ofé;gf.
©n

Example: here is an assembly source that describes the structure of a dual ZIP, that can host 2 different archive files.

After 2 unicoll computations, it gives the 2 colliding files: collision1.zip «— collision2.zip

Presentations

Exploiting Hash Collisions (2017):

¢ slides

4 Where the magic happens: random stuff + mask
BL,ACK ALPS File & Callision blocks

@ BapR B 2 ge og e o8 BE 8
B8 BE a8 28 B8 g g8 |8 B

QD Bo BB A B 0008 @ @ B LR
B8 BB 8 680 BB 8 ag pa- 2

HOF MBSk

= generirle one (i lrom The otber.

Exploiting Hash Collisions
- Ange Albertini

e video

Conclusion

Kill MD5!

https://github.com/corkami/pocs/blob/master/collisions/pics/zip.png
https://github.com/corkami/pocs/blob/master/collisions/scripts/zip.asm
https://github.com/corkami/pocs/blob/master/collisions/examples/collision1.zip
https://github.com/corkami/pocs/blob/master/collisions/examples/collision2.zip
https://speakerdeck.com/ange/exploiting-hash-collisions
https://www.youtube.com/watch?v=Y-oJWEYKVLA
https://www.youtube.com/watch?v=Y-oJWEYKVLA

Unless you actively check for malformations or collisions blocks in files, don't use MD5!

It's not a cryptographic hash, it's a toy function!

