
WordPress 5.0 RCE detailed analysis
 February 22, 2019
 Vulnerability Analysis (/category/vul-analysis/) · 404 Column (/category/404team/)

Author: LoRexxar '@ 404 Year-known laboratory

Time: February 22, 2019

On February 20th, the RIPS team published a WordPress 5.0.0 Remote Code Execution

(https://blog.ripstech.com/2019/wordpress-image-remote-code-execution/) on the o�cial

website , CVE number CVE-2019-6977. The article mainly mentioned that under the author

permission account, you can modify the Post Meta variable to cover and traverse the directory.

Writing �les and templates containing 3 vulnerabilities constitutes an RCE vulnerability.

But in the original text, the author only roughly describes the principle of vulnerability, in which

a large number of vulnerabilities are omitted, and even part of the use and the back-end server

have a corresponding relationship, so in the process of recurring encountered various

problems, we spend A lot of time analysis code, and �nally �nally completely restored the

vulnerability, some of the key utilization points use a slightly di�erent way of using the original

text (the original is too vague, can not be reproduced). In the analysis below, I will try my best to

follow the way of thinking and process in the process of recurring, so that the reader can

understand.

Thanks to the @Badcode partner who helped me in the process of recurring and analyzing, I

helped a lot of mistakes @Venenof7, @sysorem, and gave me a lot of help:>

Vulnerability requirements

After repeatedly considering the vulnerability conditions, we �nally constrained the

vulnerability requirements to

WordPress commit <= 43bdb0e193955145a5ab1137890bb798bce5f0d2 (WordPress 5.1-

alpha-44280)

(https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb79

8bce5f0d2)

Account with author permission

The impact of the server, including windows, linux, mac, the back-end image processing library

for gd / imagick are a�ected, but the di�culty of use is di�erent.

Among them, the original mentioned only a�ects release 5.0.0, but the vulnerability can be

�xed by 5.0.0 which can be downloaded from the o�cial website. WordPress 4.9.9~5.0.0, which

was not updated after the WordPress 5.1-alpha-44280 update, was a�ected by the

vulnerability.

Vulnerability recurrence

https://paper.seebug.org/category/vul-analysis/
https://paper.seebug.org/category/404team/
https://blog.ripstech.com/2019/wordpress-image-remote-code-execution/
https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce5f0d2

The following recurring process includes some exclusive use and some ways of using it that

does not match the original text. The details below explain why.

Pass picture

Change information

Keep the packet and add POST

&meta_input[_wp_attached_file]=2019/02/2-4.jpg#/../../../../themes/twentyninetee
n/32.jpg

Crop

Similarly, the data packet is changed and POST is changed to the following operation, where

nonce and id are unchanged.

action=crop-image&_ajax_nonce=8c2f0c9e6b&id=74&cropDetails[x1]=10&cropDetails[y
1]=10&cropDetails[width]=10&cropDetails[height]=10&cropDetails[dst_width]=100&cr
opDetails[dst_height]=100

Trigger the required crop

The picture has passed

Including, we choose to upload a test.txt, and then modify the information again, as before

&meta_input[_wp_page_template]=cropped-32.jpg

Click to view the attachment page. If the sensitive code is retained after the image is cropped,

the command is executed successfully.

Detailed analysis

Below we analyze in detail the entire utilization process, as well as the pits that are stepped on

in various parts. We can simply divide the vulnerability chain into 4 major parts.

1. Overwrite the _wp_attached_file variables of the image in the media library by overwriting

the Post Meta variable.

This vulnerability is the core point of the entire utilization chain, and the way WordPress is �xed

is mainly to �x this vulnerability �rst. WordPress has �xed this problem in all release versions

(the 5.0.0 version of the o�cial website has been �xed), because the original use chain has

been a�ected by another security patch of 4.9.9 and 5.0.1. So only 5.0.0 is a�ected. In the

analysis and restore of the WordPress update commit, we found the �x commit for this

vulnerability and obtained the latest version a�ected by the vulnerability as WordPress commit

<= 43bdb0e193955145a5ab1137890bb798bce5f0d2 (WordPress 5.1-alpha-44280)

(https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce

5f0d2)

2, through the cropping function of the image, the cropped image is written to any directory

(directory traversal vulnerability)

In WordPress settings, the image path may be a�ected by a plugin. If the target image is

not in the desired path, WordPress will stitch the �le path to look like http://127.0.0.1/

Wp-content/uploads/2019/02/2.jpg url link, then download the original image from url

access

If we construct a ?或者# trailing path, we can cause inconsistencies in the location of the image

and the location of the image being written. .

The biggest problem with this part is that the cutting function of the front end is not a function

with a vulnerability. We can only do this by manually constructing this clipping request.

action=crop-image&_ajax_nonce=8c2f0c9e6b&id=74&cropDetails[x1]=10&cropDetails[y
1]=10&cropDetails[width]=10&cropDetails[height]=10&cropDetails[dst_width]=100&cr
opDetails[dst_height]=100

Ps: When the backend image library is Imagick, Imagick's Readimage function cannot read the

image of the remote http protocol, which requires https.

3. Override the Post Meta variable and set the _wp_page_template variable.

This part has been taken in the original text, and it is also the biggest problem in the entire

analysis and recurrence process. All the so-called WordPress RCE analysis that is now open has

bypassed this part. There are two of the most important points:

How to set this variable?

How to trigger this template reference?

This section is explained in detail below.

https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce5f0d2

4. How to make the image contain the php sensitive code after it has been cropped.

This part involves the problem of the back-end image library. There are two back-end image

processing libraries used by WordPress, gd and imagick, and the default priority is to use

imagick for processing.

Imagick is

a bit simpler, and imagick doesn't handle the exif part of the image. Adding sensitive code

to the exif section will not change.

The use of gd gd is more troublesome, gd will not only process the exif part of the picture,

but also delete the php code that appears in the picture. Unless the attacker gets a well-

constructed image through fuzz, it can just appear the required PHP code (higher

di�culty) after being cropped.

Finally, by linking the above four processes, we can fully exploit this vulnerability, and then we

analyze it in detail.

Post Meta variable coverage

When you edit the image of your upload, you will trigger action=edit_post

wp-admin/includes/post.php line 208

Post data from POST

If it is �xed, there is a repair patch on line 275.

$translated = _wp_get_allowed_postdata($post_data);

https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce

5f0d2

(https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce

5f0d2)

This patch directly prohibits the passing of this variable

https://github.com/WordPress/WordPress/commit/43bdb0e193955145a5ab1137890bb798bce5f0d2

function _wp_get_allowed_postdata($post_data = null) {
 if (empty($post_data)) {
 $post_data = $_POST;
 }
 // Pass through errors
 if (is_wp_error($post_data)) {
 return $post_data;
 }
 return array_diff_key($post_data, array_flip(array('meta_input', 'file',
 'guid')));
}

This function can be followed all the way. wp-includes/post.php line 3770

update_post_metaWill traverse all �elds

Will update the corresponding �elds in the database

Match the variable override to the directory to traverse the write �le

According to the description of the original text, we �rst need to �nd the corresponding

clipping function.

/wp-admin/includes/image.php line 25

The variable src passed in here is from the modi�ed one _wp_attached_file .

In the code, we can easily verify a problem. In WordPress settings, the image path may be

a�ected by a plugin. If the target image is not in the desired path, WordPress will stitch

the �le path into a shape like http://127.0.0.1/wp -content/uploads/2019/02/2.jpg url link,

then download the original image from the url

This _load_image_to_edit_path is used to complete this operation.

It is for this reason that, assuming that the image we uploaded is named 2.jpg , the original

one _wp_attached_file is 2019/02/2.jpg

Then we modify it _wp_attached_file to be replaced by Post Meta

variable 2019/02/1.jpg?/../../../evil.jpg

The original image path here will be stitched into {wordpress_path}/wp-

content/uploads/2019/02/1.jpg?/../../../evil.jpg . It is obvious that the �le does not exist,

so the link will be stitched http://127.0.0.1/wp-

content/uploads/2019/02/2.jpg?/../../../evil.jpg , and the latter part will be treated as a

GET request, and the original image will be successfully obtained.

The new image path that follows the save function will be stitched together so

{wordpress_path}/wp-content/uploads/2019/02/1.jpg?/../../../cropped-evil.jpg that we

can successfully write the new �le.

The later save function will call the cropping function of your current image library to generate

the image result. (default is imagick)

/wp-includes/class-wp-image-editor.php line 394

But there seems to be no limit here, but it is not. Under the target directory of the write, there

is a fake directory, 1.jpg?

Linux, mac support this fake directory, you can use the number

But windows can't have a ? in the path, so I changed the ## here.

&meta_input[_wp_attached_file]=2019/02/2-1.jpg#/../../../evil.jpg

Successfully written to �le

cropped-evil.jpg

Control template parameters to cause arbitrary �le inclusion

As the progress progressed, it was a bit of a stalemate, because the original part of this article

was only used in one sentence. In the process of actual use, I encountered many problems.

Even di�erent versions of WordPress will have di�erent performances, and many of them have

been born. The way of using, here I mainly talk about a stable use.

Setting_wp_page_template

First, let’s go forward and analyze to see under what circumstances we can

set _wp_page_template

First of all, it is certain that this variable _wp_attached_file is part of Post Meta and can be

assigned to this variable by the previous operation.

But during the actual testing process, we found that we can't modify and set this value in any

way.

/wp-includes/post.php line 3828

If you set this value, but this �le does not exist, it will be de�ned as default .

If this value is set, there is no way to modify it this way.

So here we may need to pass a new media �le and then set this value via variable coverage.

Loading template

When we successfully set the variable, we found that not all pages will load the template, we

return to the code.

The place where the template is �nally loaded is

wp-includes/template.php line 634

As long as it is $template_names the �le name that needs to be loaded in it, it will be traversed

and loaded in the current theme directory.

Backtracking

wp-includes/template.php line 23

Continuing backtracking we can �nd some clues. When you visit the page, the page will call

di�erent template load functions through the page properties you access.

wp-includes/template-loader.php line 48

There are only two functions in so many template call functions get_page_templateand

get_single_template the two calls the get_page_template_slug function in the function.

wp-includes/template.php line 486

And the get_page_template_slug function gets the _wp_page_template value from the database

/wp-includes/post-template.php line 1755

As long as we can get into the template to load get_page_templateor get_single_templateour

template can be successfully contained.

Due to the di�erence between the code and the front end, we have not completely found out

what the trigger condition is. Here is the easiest one to upload a txt �le in the repository, then

edit the information and preview it.

Generate picture horse

This part involves the problem of the back-end image library. There are two back-end image

processing libraries used by WordPress, gd and imagick, and the default priority is to use

imagick for processing.

Imagick

With a little simpler, imagick doesn't handle the exif part of the image. Adding sensitive code to

the exif section will not change.

Gd

The use of gd is more troublesome, gd will not only process the exif part of the picture, but also

delete the php code that appears in the picture. Unless the attacker gets a well-constructed

image through fuzz, it can just appear the required PHP code (higher di�culty) after being

cropped.

Since this is not the core part of the vulnerability, I won't go into details here.

repair

1. Since the vulnerability mainly completes RCE through the picture horse, and the back-end

image library is gd, gd will remove the exif part of the picture information and remove the

sensitive php code. However, if an attacker carefully designs a picture that is cropped and just

generates sensitive code, it can cause an RCE vulnerability. If the backend image library is

imagick, adding the sensitive code to the exif portion of the image information can cause an

RCE vulnerability.

This vulnerability has been �xed in all release versions available for download on the o�cial

website, updated to the latest version or manually overwritten by the current version.

2, the general defense program

Use a third-party �rewall for protection (such as Chuang Yudun [https://www.yunaq.com/cyd/

(https://www.yunaq.com/cyd/)]).

3, technical business consulting

Know the Chuangyu technology business consulting hotline:

400-060-9587 (government, state-owned enterprises), 028-68360638 (Internet companies)

to sum up

The entire RCE utilization chain consists of four parts, deep into the underlying Core logic of

WordPress. Originally, these four parts are hard to cause any harm, but they are cleverly

connected, and the whole part is unexpectedly the default con�guration. , greatly increased the

impact of the face. This kind of attack exploit chain is quite rare in WordPress, which is

extremely secure. It is a very nice vulnerability from any angle:>

Finally, I would like to thank my friends and my friends who have helped me a lot in the

process:>

https://www.yunaq.com/cyd/

This article was published by Seebug Paper. Please indicate the source if you need to reprint.

This paper address: https://paper.seebug.org/822/ (https://paper.seebug.org/822/)

Know Chuangyu 404 Lab (/users/author/?
nickname=%E7%9F%A5%E9%81%93%E5%88%9B%E5%AE%87404%E5%AE%9E%E9%AA%8C%E5%AE%A4)

Read more about this author (/users/author/?

nickname=%E7%9F%A5%E9%81%93%E5%88%9B%E5%AE%87404%E5%AE%9E%E9%AA%8C%E5%AE%A4) 's article

(/users/a

nickname

https://paper.seebug.org/822/
https://paper.seebug.org/users/author/?nickname=%E7%9F%A5%E9%81%93%E5%88%9B%E5%AE%87404%E5%AE%9E%E9%AA%8C%E5%AE%A4
https://paper.seebug.org/users/author/?nickname=%E7%9F%A5%E9%81%93%E5%88%9B%E5%AE%87404%E5%AE%9E%E9%AA%8C%E5%AE%A4
https://paper.seebug.org/users/author/?nickname=%E7%9F%A5%E9%81%93%E5%88%9B%E5%AE%87404%E5%AE%9E%E9%AA%8C%E5%AE%A4

