Introduction

The following text outlines a potential path for exploitation of CVE-2019-0708 (BlueKeep). It is
certain that some people will disagree with releasing this text. Reasons why | am releasing:

It is released in the spirit of open knowledge.
It is an attempt to give back to the hacker community from whom | have learned so much
thanks to their willingness to share information.

m The information within here is largely already available within the Chinese hacker
community [1].

m The attack path that follows is geared towards Windows XP, while it may be technically
possible on Windows 7 or Server 2008, it is more likely to BSOD.

m No exploit code or ring 0 to ring 3 shellcode is shared within this text. (RDP connection
code is available at [2])

m Details are left out.

Technical Analysis

CVE-2019-0708 affects Windows XP through Windows Server 2008. A use after free (UAF)
condition exists within the termdd.sys RDP kernel driver. A remote, unauthenticated attacker
can exploit this vulnerability by establishing an RDP connection to the target server, opening an
MS_T120 virtual channel, and sending crafted data to it. Successful exploitation will result in the
attacker executing arbitrary code with kernel-level privileges or causing a denial-of-service. For
a full detailed analysis how to trigger the UAF condition consult [3]. The following analysis will
assume a base level of knowledge from the previous article.

A first step after understanding how to trigger the UAF is to understand how the dangling pointer
is used after it is freed. Due to our knowledge from [3] we know that the dangling pointer is
returned by IcaFindChannel within the IcaChannellnputinternal function within termdd.sys. A
good place to start then is analyzing the code after the IcaFindChannel call. To disassemble
termdd.sys | will be utilizing radare2 [4]. This will not be a radare?2 tutorial, but the following
commands will help you get started if you would like to follow along (for more information on
using radare2 see [5]):

Open termdd.sys with radare2:

r2 termdd.sys

Download the debugging symbols:
> idpd

Load the debugging symbols:

> idp

Run analysis:
> aaa

After seeking to IcaChannellnputinternal and reviewing the code after IcaFindChannel we see
the following:

We first see that the dangling pointer (in eax after return from IcaFindChannel) is moved into
edi. Thus for now we are largely concerned with instructions that deal with edi. After reviewing
this set of instructions something very interesting stands out immediately. At 0x11779 we see
the instruction mov, eax, dword [edi + 0x50], and then 8 instructions later at 0x1178b
we see call dword [eax].Already we can see how we might control EIP!

It is useful to take a step back and think about the vulnerability class and how we might be able
to exploit this instance of it. A use after free is exactly its name - memory is used after it has
been freed. Our dangling pointer in edi is pointing to memory that has been returned (freed) to
the memory manager. The memory manager can now allocate that same memory to another
requestor. In other words, ed1i is referencing invalid data within the context of the
IcaChannellnputinternal function. This will inevitably cause a blue screen of death, or arbitrary
code execution if we have anything to do about it :).

Given this information we formulate a high level attack plan:

1. Establish an RDP connection with the MS_T120 virtual channel.

2. Send specific data on MS_T120 virtual channel to free channel control structure.

3. Invoke an allocation with data controlled by us to occupy the freed channel control
structure memory space.

4. Control EIP

To accomplish step 3 we need to first understand a few things. Namely, what is the size of the
channel control structure and what type of memory it is (paged or non-paged). This is best
accomplished using Windbg. We set a breakpoint on IcaFindChannel within
IcaChannellnputinternal and send data on the MS_T120 channel. We see our sent data is at
ebp+18, and the channel control structure pointer is 0x8238ccb8.

kdr dd poi(ebp+18)

elile?db 41414141 41414141 41414141 41414141
elileeb 41414141 41414141 41414141 41414141
elilefb 41414141 41414141 41414141 41414141
eliledldb 41414141 41414141 41414141 41414141
eliledlb 41414141 41414141 41414141 41414141
el3iled2b 41414141 41414141 41414141 41414141
elileddb 41414141 41414141 41414141 41414141
elileddb 41414141 41414141 41414141 41414141

kd: p
termndd! IcaChannel InputInternal+0xha :
faa?b728 8bia oW edl . eax

kdr r sax
2ax=8238cchi

Next we use the handy ! pool command to find more about this allocated memory:

Pool page 8238cchf region is Honpaged pool

8238000 =ize: 11 previous =S1Ee: 0 (Allocated) Htir
8238040 =izEe: g previous sSizEe: 401 (Fres) oo o0
82380048 =ize: 28 previous =ize: 98 (Allocated) HtF=
3238070 =ize: 40 previous =ize: 28 (Allocated) Htfr
#3238cchl =i1ze: 98 previous =l1ze: 40 (Allocated) *#Ica

COwning compohent | Unknown (update pooltag. t=t)
8238cd48 =ize: 68 previous Size: 98 (Allocated) HMmnCa
8238cdbl =ize: 10 previous =ize: 63 (Free) CzPL

From this output we can see that the allocated memory region is non-paged pool. Further down
we see our channel control structure memory. It starts at 0x8238ccb0 and is size 0x98.

We have our size and memory type, but how actually to allocate the memory? Allocation
requests for pool memory are typically serviced through the function call ExAllocatePoolWithTag
(see [6] for more information on windows pool). We need to locate this function call, but not any
one will do. We have very strict requirements:

1. Must allocate non-paged memory.

2. Must be able to allocate an arbitrary size controlled by us.

3. Must eventually contain data controlled by us.

The code base for RDP is huge and built upon many layers. There are lots of places we could
potentially look. However, it is best to start simple and start the search in termdd. Going back to
radare2 we first locate ExAllocatePoolWithTag:

ii ~ExAllocatePoolWithTag
NONE

016734
040e [DATA] mov i, dword tosh L Ex atef i
ork 049f [CALL] dword sym.imp.ntoskrnl.exe ExAllocatePoolWithTag
i 3 E 0 2 4 Oae8 [CALL] dword sym,imp.nt - 1locatePoolWithTag
pdb. Ica i ocInternal 24 @x1@b3c [CALL] dword sym.imp.n or 1locatePoolWithTag
pdb aCo ataToUser er 12 exl1eds7 [(.ALL] dword sym.imp. nto~.k ExAllocatePoolWithTag
ofob [caLL] [§ dx.'md sym.imp.ntoskrnl. E Allamtn—PoolWlthTag
nal 24 0x11905 [CALL] dword sym.imp. ntcukrnl ExAllocatePoolWithTag

0 = 2 ©x11c22 [CALL] dwmd sym.imp.ntoskrnl.e xAllocatePoolWithTag
pdb. IcaAllocateConnection € 4at [CALL] dword sym.imp.ntoskrnl. _ ExAllocatePoolWithTag

(nofunc) | dword sym.imp.ntoskrnl. ExAllocatePoolWithTag

pdb. nProcessRequest 8 0x12b7d [CALL] wmd sym. J_rup ntoskrnl.exe E»AllocatrPnolWlthTag
pdb. IcalIn 3012 [DATA] mov esi, 30
pdb.___ ! - < 0 0x13419 [CALL] [8 dwnrd sym.imp. Aiaskrn 110(dtr-Poul1NJ_thTag
€ 0x13534 [(ALL] [l dword sym. J.rnp ntoskrn ExAllocatePoolWithTag
ocat yolWithTag ©x137bc [CALL] [8 dword ~.yn imp.ntoskrnl.exe ExAllocatePoolWithTag
ool Bx137ee [CALL] dwurd imp.nto
pdb.__ICc!L:_na'T 0x13c16 [CALL] dword sym. J_rup ntoskrnl.
sym.TERMDD IcaCreateThread Ox14: [CALL] [=}§8 dword sym.imp.ntoskrnl ExAllocatePoolwithTag
(nofunc) 4 rd sym.imp.ntoskrnl. X - oulwnthg
(nofunc) 4 word sym.imp.ntoskrnl.
(nofunc 4 rd sym.imp.ntoskrnl.
.imp.ntoskrnl.

_ x15646 [CALL] dword sym.imp.ntoskrnl.exe ExAllocatePoolWithTag
ym.TERMDD 't € [CALL] dword sym.imp.ntoskrnl. # 1locatePoolwWithTag
sym.TERMDD aQue ork 15995 [CALL] dword sym.imp.ntoskr e ExAllocatePoolWithTag
sym.TERMDD.SYS Ica eate 0x15a55 [CALL] dword sym.imp.ntoskrnl.exe ExAllocatePoolWithTag
pe IcaT ewri 3 Ox15eb6 [CALL] dword sym.imp.ntoskrnl llocatePoolwithTag
pdb. IcaOpenTr B 0x1620b [CALL] dword sym.imp.ntos e ExAllocatePoolWithTag
(nofunc) ©x16653 [CALL dword sym.imp.ntoskrnl. _ExAllocatePoolWithTag
entrye ex 4e [CALL] rd sym.imp. ntmkrnl e ExAllocatePoolWithTag

y_8 0x1852c [D 1 mov ebx, y 1 } exe ExAL

One stands out as particularly interesting, and that is the reference within
IcaChannellnputinternal. Let’s review the code:

Reviewing the arguments for ExAllocatePoolWithTag [7]:

PVOID ExAllocatePoolWithTag(
__drv_strictTypeMatch(__drv_typeExpr)POOL_TYPE PoolType,
SIZE_T NumberOfBytes,
ULONG

e

Tag

Promising, as neither the size nor the pool type are hardcoded. Let’s place a breakpoint on this
call within IcaChannellnputinternal and send variable size data on our virtual channel:

Breakpoint 0 hit
termndd! IcaChannelInputInternal+0x295:

fa887b905 ff15340f8358f8 call dword ptr [termdd!_imp_ ExdllocatePoolWithTag (f8880£34)]
kd> dd poiiebp+18)

B8lclief2 41414141 41414141 41414141 41414141
8lclfe92 41414141 41414141 414143141 41414143
Blclfea? 41414141 41414141 41414141 41414141
8lclieb? 41414141 41414141 41414141 41414141
Blclfec? 41414141 41414141 414143141 41414143
Blclfed? 41414141 41414141 414143141 41414141
8lcliese? 41414141 9b000003 &480£002 =£030700
8lclfef? 088c8070 29000000 deelb8bo b4alh278
kd> dd e=p

b2afd3c0 00000000 0OO0OO0DS4 EEREREEss 82143008
b2agd3d0 00000000 =120b3a8 90=e28656 Blabesesd

Here we see we are within IcaChannellnputinternal with the data we sent. PoolType is 0
(non-paged) and size is 0x84. This call then meets requirement 1. Going to the next packet we
sent:

termdd! IcaChannelInputInternal +0x295
fa887b905 f£f15340f88f8 zall dword ptr [termdd!_imp EzxAllocatePoolWithTag (£8880£34)]
kd: dd poiiebp+18)

B1lclff09 41414141 41414141 41414141 41414141
Blc1ff19 41414141 41414141 41414141 41414141
Glclff29 41414141 41414141 41414141 41414141
Blclffds 41414141 41414141 41414141 41414141
Blc1ff49 41414141 41414141 41414141 41414141
G1cl1f£f59 41414141 41414141 41414141 41414141
Blclffey 41414141 41414141 41414141 41414141
Blc1ff79 41414141 41414141 af000003 e480£002
kd: dd e=p

bZabd3icO 00000000 00000098 20616349 82143008
b2acd3d0 00000000 =120b3a8 79400804 S1£f32257

The next size is 0x98. It is looking very likely that we directly control the size of this allocation.
This allocation is looking very promising, to find out more about how the allocated memory is
used let’s place a read/write breakpoint on it and continue execution:

kd: r eax
sax=0237cadl
kdy ba r4 8237cadl

A few instructions later our breakpoint is hit within the same function:

kd: g
Breakpoint 1 hit
termdd! IcaChannel InputInternal+0x2d6

f337b946 8394b04 mowr dword ptr [ebx+d].ecx

kd: ub

termdd! IcaChannel InputInternal+0x2cl

f287b931 Bbcid mow SCH, SaHE

f287b933 83=103 and ScH, 3

f337b936 f3ad rep movs byvte ptr e=:[edi].bvte ptr [e=1]

f337b938 3b7df0 mows edi,dword ptr [ebp-10h]

f337b93b 8b751c mow ezl ,dword ptr [ebp+l1Ch]

f287b93= 844774 lea 2ax, [2di+74h]

f337b941 8b4304 mowr eck, dword ptr [sax+d]

f337b944 8903 mowr dword ptr [ebx].esax

kd: r

2ax=8205calc ebx=2823Ycadl ecx=022d7710 edx=02=00002 ==i=00000078 =di=8205=928
2ip=f83837b946 eszp=bZabd3icc ebp=bZacd400 iopl=0 nv up 21 pl Er na pe nc
c==0008 ===0010 d==0023 e==0023 f{f==0030 g==0000 ef1=00000246
termdd! IcaChannel InputInternal+0x2de6:

f337b946 8394b04 mowr dword ptr [ebx+4].ecx d=:0023:8237cad4=3237cadid

Looking at the previous instructions rep movs byte ptr es:[edi], byte ptr [esi]
stands out as it is used to copy memory from one buffer to another. Let’s check our pointer that
was returned from the ExAllocatePoolWithTag call:

kd: dd 8237cad0 LEO

8237cad40 B82050calc 8237cadd 8237cacl 00000078
8237cat0 00000078 00G5=0065 00610048 00640072
8237cabl 41414141 41414141 41414141 41414141
823%7ca?0 41414141 41414141 41414141 41414141
8237caf80 41414141 414714141 41414141 41414141
8237ca%0 41414141 41414141 41414141 41414141
8237caal 41414141 41414141 41414141 41414141
8237cabl 41414141 41414141 41414141 41414141
8237cacl 41414141 41414141 41414141 41414141
8237cadl 41414141 41414141 02050014 EdE6L34E

That checks off requirement #3. IcaChannellnputinternal is truly a function sent by the RDP
exploit gods. It contains everything we need for RCE.

Further filling out the attack plan we now have:

1. Establish an RDP connection with the MS_T120 virtual channel.

2. Send specific data on MS_T120 virtual channel to free channel control structure.

3. Invoke allocations via call to ExAllocatePoolWithTag in lcaChannellnputinternal such
that the freed memory space is occupied with our data.

4. Control EIP via vtable call by placing function pointer to our shellcode at [edi + 50]
within our fake allocated channel control structure.

5. Break the connection to trigger UAF

6. Obtain RCE

Items to think about:

Where is our shellcode located?

Can we run any plain old userspace shellcode?

Are we able to send data on a channel that we've closed?

If we've accomplished the above how do we exit cleanly such that we don’t immediately
BSOD after shellcode executes?

N

These are all exercises left to the reader :).

Conclusion

The previous text outlined a potential path for exploitation of CVE-2019-0708 (BlueKeep). It is
my hope (@0xeb_bp) that someone somewhere learned something. Before diving into this | had
admittedly never even opened Windbg and had 0 exploitation experience with the Windows
kernel. The journey through this taught me so much and | am very excited to move into more
Windows kernel exploitation.

| could not have done any of this without people who have written and done so much work and
shared it for everyone. Special thanks to @FuzzySec @stephenfewer @epakskape @aionescu
@trufae and @kernelpool.

References

1. https://github.com/blackorbird/APT _REPORT/blob/master/exploit_report/%23bluekeep%
20RDP%20from%20patch%20t0%20remote%20code%20execution.pdf

2. https://github.com/Oxeb-bp/bluekeep

3. https://www.zerodayinitiative.com/blog/2019/5/27/cve-2019-0708-a-comprehensive-anal
ysis-of-a-remote-desktop-services-vulnerability

4. https://github.com/radare/radare2

5. https://www.megabeets.net/a-journey-into-radare-2-part-1/

6. https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_ DC_2011_Mandt_kernelpool-wp.p
df

7. https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-ex
allocatepoolwithtag

8. http://www.uninformed.org/?v=3&a=4&t=pdf

9. https://www.fuzzysecurity.com/tutorials/expDev/8.html

https://github.com/blackorbird/APT_REPORT/blob/master/exploit_report/%23bluekeep%20RDP%20from%20patch%20to%20remote%20code%20execution.pdf
https://github.com/blackorbird/APT_REPORT/blob/master/exploit_report/%23bluekeep%20RDP%20from%20patch%20to%20remote%20code%20execution.pdf
https://github.com/0xeb-bp/bluekeep
https://www.zerodayinitiative.com/blog/2019/5/27/cve-2019-0708-a-comprehensive-analysis-of-a-remote-desktop-services-vulnerability?source=post_page---------------------------
https://www.zerodayinitiative.com/blog/2019/5/27/cve-2019-0708-a-comprehensive-analysis-of-a-remote-desktop-services-vulnerability?source=post_page---------------------------
https://github.com/radare/radare2
https://www.megabeets.net/a-journey-into-radare-2-part-1/
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-exallocatepoolwithtag
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-exallocatepoolwithtag
http://www.uninformed.org/?v=3&a=4&t=pdf
https://www.fuzzysecurity.com/tutorials/expDev/8.html

