
13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 1/61

This	work	was	originally	done	on	Windows	7	Ultimate	SP1	64-bit. 

The	versions	of	the	libraries	used	in	the	tutorial	are:

termdd.sys	version 6.1.7601.17514

rdpwsx.dll	version 6.1.7601.17828

rdpwd.sys	version 6.1.7601.17830

icaapi.dll	version 6.1.7600.16385

rdpcorekmts.dll	version 6.1.7601.17828

 

The	Svchost.exe	process

In	the	Windows	NT	operating	system	family,	svchost.exe	('Service	Host)	is	a	system	process	that	serves	or

hosts	multiple	Windows	services.

It	runs	on	multiple	instances,	each	hosting	one	or	more	services.	It's	indispensable	in	the	execution	of	so-

called	shared	services	processes,	where	a	grouping	of	services	can	share	processes	in	order	to	reduce	the

use	of	system	resources.

The	tasklist	/svc	command	on	a	console	with	administrator	permission	shows	us	the	di�erent	svchost

processes	and	their	associated	services.

Also	in	PROCESS	EXPLORER	you	can	easily	identify	which	of	the	SVChosts	is	the	one	that	handles	RDP

connections.(Remote	Desktop	Services)

06
AUG
2 0 1 9





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 2/61

STEP	1)	Initial	reversing	to	�nd	the	point	where	the	program
starts	to	parse	my	data	decrypted
The	�rst	thing	we'll	do	is	try	to	see	where	the	driver	is	called	from,	for	that,	once	we're	debugging	the	remote

kernel	with	Windbg	or	IDA,	we	put	a	breakpoint	in	the	driver	dispatch	i.e.	in	the	IcaDispatch	function	of

termdd.sys.

In	windbg	bar	I	type

.reload	/f

!process	1	0

PROCESS	��fa8006598b30




13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 3/61

SessionId:	0	Cid: 0594 Peb:	7��fd7000	ParentCid:	01d4

DirBase:	108706000	ObjectTable:	��f8a000f119a0	HandleCount:	662.

Image:	svchost.exe

The	call	stack	is

WINDBG>k

Child-SP	RetAddr	Call	Site

��f880`05c14728	��f800`02b95b35	termdd!IcaDispatch

��f880`05c14730	��f800`02b923d8	nt!IopParseDevice+0x5a5

��f880`05c148c0	��f800`02b935f6	nt!ObpLookupObjectName+0x588

��f880`05c149b0	��f800`02b94efc	nt!ObOpenObjectByName+0x306

��f880`05c14a80	��f800`02b9fb54	nt!IopCreateFile+0x2bc

��f880`05c14b20	��f800`0289b253	nt!NtCreateFile+0x78

��f880`05c14bb0	00000000`7781186a	nt!KiSystemServiceCopyEnd+0x13

00000000`06d0f6c8	000007fe`f95014b2	ntdll!NtCreateFile+0xa

00000000`06d0f6d0	000007fe`f95013f3	ICAAPI!IcaOpen+0xa6

00000000`06d0f790	000007fe`f7dbd2b6	ICAAPI!IcaOpen+0x13

00000000`06d0f7c0	000007fe`f7dc04bd	rdpcorekmts!CKMRDPConnection::InitializeInstance+0x1da

00000000`06d0f830	000007fe`f7dbb58a	rdpcorekmts!CKMRDPConnection::Listen+0xf9

00000000`06d0f8d0	000007fe`f7dba8ea	rdpcorekmts!CKMRDPListener::ListenThreadWorker+0xae

00000000`06d0f910	00000000`7755652d	rdpcorekmts!CKMRDPListener::staticListenThread+0x12

00000000`06d0f940	00000000`777ec521	kernel32!BaseThreadInitThunk+0xd

00000000`06d0f970	00000000`00000000	ntdll!RtlUserThreadStart+0x1d

An	instance	of CKMRDPListener	class	is	created.

This	thread	is	created,	the	start	address	of	the	thread	is	the	method	CKMRDPListener::staticListenThread





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 4/61

the	execution	continues	here

here

here





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 5/61

IcaOpen	is	called

We	can	see	RDX	(bu�er)	and	r8d	(size	of	bu�er)	both	are	equal	to	zero	in	this	�rst	call	to	IcaOpen.

Next	the	driver	termdd	is	opened	using	the	call	to	ntCreateFile





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 6/61

We	arrived	to IcaDispatch	when	opening	the	driver.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 7/61

 

Reversing	we	can	see

The	MajorFunction	value	is	read	here 





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 8/61

As	MajorFuncion	equals	0	it	takes	us	to	IcaCreate

Inside	IcaCreate,	SystemBu�er	is	equal	to	0





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 9/61

A	chunk	of	size	0x298	and	tag	ciST	is	created, and	I	call	it chunk_CONNECTION.

chunk_CONNECTION	is	stored	in	FILE_OBJECT.FsContext

I	rename	FsContext	to FsContext_chunk_CONNECTION. 



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 10/61

IcaDispatch	is	called	for	second	time

Child-SP	RetAddr	Call	Site

��f880`05c146a0	��f880`03c96748	termdd!IcaCreate+0x36

��f880`05c146f0	��f800`02b95b35	termdd!IcaDispatch+0x2d4

��f880`05c14730	��f800`02b923d8	nt!IopParseDevice+0x5a5

��f880`05c148c0	��f800`02b935f6	nt!ObpLookupObjectName+0x588

��f880`05c149b0	��f800`02b94efc	nt!ObOpenObjectByName+0x306

��f880`05c14a80	��f800`02b9fb54	nt!IopCreateFile+0x2bc

��f880`05c14b20	��f800`0289b253	nt!NtCreateFile+0x78

��f880`05c14bb0	00000000`7781186a	nt!KiSystemServiceCopyEnd+0x13

00000000`06d0f618	000007fe`f95014b2	ntdll!NtCreateFile+0xa

00000000`06d0f620	000007fe`f95018c9	ICAAPI!IcaOpen+0xa6

00000000`06d0f6e0	000007fe`f95017e8	ICAAPI!IcaStackOpen+0xa4

00000000`06d0f710	000007fe`f7dbc015	ICAAPI!IcaStackOpen+0x83

00000000`06d0f760	000007fe`f7dbd2f9	rdpcorekmts!CStack::CStack+0x189

00000000`06d0f7c0	000007fe`f7dc04bd	rdpcorekmts!CKMRDPConnection::InitializeInstance+0x21d

00000000`06d0f830	000007fe`f7dbb58a	rdpcorekmts!CKMRDPConnection::Listen+0xf9

00000000`06d0f8d0	000007fe`f7dba8ea	rdpcorekmts!CKMRDPListener::ListenThreadWorker+0xae

00000000`06d0f910	00000000`7755652d	rdpcorekmts!CKMRDPListener::staticListenThread+0x12

00000000`06d0f940	00000000`777ec521	kernel32!BaseThreadInitThunk+0xd

00000000`06d0f970	00000000`00000000	ntdll!RtlUserThreadStart+0x1d

We	had	seen	that	the	previous	call	to	the	driver	had	been	generated	here





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 11/61

When	that	call	ends	an	instance	of	the	class	Cstack	is	created 

And	the	class	constructor	is	called.

this	matches	the	current	call	stack

��f880`05c146a0	��f880`03c96748	termdd!IcaCreate+0x36

��f880`05c146f0	��f800`02b95b35	termdd!IcaDispatch+0x2d4

��f880`05c14730	��f800`02b923d8	nt!IopParseDevice+0x5a5

��f880`05c148c0	��f800`02b935f6	nt!ObpLookupObjectName+0x588

��f880`05c149b0	��f800`02b94efc	nt!ObOpenObjectByName+0x306

��f880`05c14a80	��f800`02b9fb54	nt!IopCreateFile+0x2bc

��f880`05c14b20	��f800`0289b253	nt!NtCreateFile+0x78

��f880`05c14bb0	00000000`7781186a	nt!KiSystemServiceCopyEnd+0x13

00000000`06d0f618	000007fe`f95014b2	ntdll!NtCreateFile+0xa

00000000`06d0f620	000007fe`f95018c9	ICAAPI!IcaOpen+0xa6

00000000`06d0f6e0	000007fe`f95017e8	ICAAPI!IcaStackOpen+0xa4





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 12/61

00000000`06d0f710	000007fe`f7dbc015	ICAAPI!IcaStackOpen+0x83

00000000`06d0f760	000007fe`f7dbd2f9	rdpcorekmts!CStack::CStack+0x189

00000000`06d0f7c0	000007fe`f7dc04bd	rdpcorekmts!CKMRDPConnection::InitializeInstance+0x21d

00000000`06d0f830	000007fe`f7dbb58a	rdpcorekmts!CKMRDPConnection::Listen+0xf9

00000000`06d0f8d0	000007fe`f7dba8ea	rdpcorekmts!CKMRDPListener::ListenThreadWorker+0xae

00000000`06d0f910	00000000`7755652d	rdpcorekmts!CKMRDPListener::staticListenThread+0x12

00000000`06d0f940	00000000`777ec521	kernel32!BaseThreadInitThunk+0xd

00000000`06d0f970	00000000`00000000	ntdll!RtlUserThreadStart+0x1d

 

The	highlighted	text	is	the	same	for	both	calls,	the	di�erence	is	the	red	line	and	the	upper	lines

00000000`06d0f7c0	000007fe`f7dc04bd	rdpcorekmts!CKMRDPConnection::InitializeInstance+0x1da

The	second	call	returns	to  

00000000`06d0f7c0	000007fe`f7dc04bd	rdpcorekmts!CKMRDPConnection::InitializeInstance+0x21d

And	this	second	call	continues	to





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 13/61

Next

Next





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 14/61

We	arrived	to	_IcaOpen,	calling	ntCrea�le	for	the	second	time,	but	now	Bu�er	is	a	chunk	in	user	allocated	with

a	size	di�erent	than	zero,	its	size	is	0x36.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 15/61

This	second	call	reaches	IcaDispath	and	IcaCreate	in	similar	way	to	the	�rst	call.

 

But	now	SystemBu�er	is	di�erent	than	zero,	I	suppose	that	SystemBu�er	is	created,	if	the	bu�er	size	is

di�erent	to	zero.(in	the	�rst	call	bu�er=0 →	SystemBu�er=0	now	bu�er!=0 →	SystemBu�er	is !=0).

SystemBu�er	is	stored	in _IRP.AssociatedIrp.SystemBu�er here 





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 16/61

 

in	the	decompiled	code

Previously	IRP	is	moved	to	r12

=





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 17/61

That	address	is	accessed	many	times	over	there,	so	the	only	way	to	stop	when	it	is	nonzero	is	to	use	a

conditional	breakpoint. 





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 18/61

The	�rst	time	that	RAX	is	di�erent	from	zero	it	stops	before	the	second	call	to	CREATE,	and	if	I	continue

executing,	I	reach	IcaCreate	with	that	new	value	of	SystemBu�er.

We	arrived	at	this	code,	the	variable	named	"contador"	is	zero,	for	this	reason,	we	landed	in	IcaCreateStack.

In	IcaCreateStack	a	new	fragment	of	size	0xBA8	is	allocated,	I	call	it	chunk_stack_0xBA8.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 19/61

I	comment	the	conditional	breakpoint	part,	to	avoid	stopping	and	only	keep	logging.

 

I	repeat	the	process	to	get	a	new	fresh	log. 





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 20/61

Summarizing	by	just	executing	this	two	lines	of	code	to	create	a	connection,	and	even	without	sending	data,

we	have	access	to	the	driver

The	most	relevent	part	of	the	log	when	connecting	is	this.

IcaCreate	was	called	two	times,	with	MajorFunction	=	0x0.

The	�rst	call	allocates	CHUNK_CONNECTION,	the	second	call	allocates	chunk_stack_0xBA8.

We	will	begin	to	reverse	the	data	that	it	receives,	for	it	would	be	convenient	to	be	able	to	use	Wireshark	to

analyze	the	data,	although	as	the	connection	is	encrypted	with	SSL,	in	Wireshark	we	could	only	see	that	the

encrypted	data	which	does	not	help	us	much.

The	data	travels	encrypted	and	thus	the	Wireshark	receives	it,	but	we	will	try	to	use	it	all	the	same.

For	this	purpose	we	need	to	detect	the	point	where	the	program	begins	to	parse	data	already	decrypted.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 21/61

The	driver	rdpwd.sys	is	in	charge	of	starting	to	parse	the	data	already	decrypted.

The	important	point	for	us	is	in	the	function	MCSIcaRawInputWorker,	where	the	program	started	to	parse	the

decrypted	code.

 

STEP	2)	Put	some	conditional	breakpoints	in	IDA	PRO	to
dump	to	a	�le	the	data	decrypted
The	idea	is	place	a	conditional	breakpoint	in	that	point,	so	that	each	time	the	execution	passes	there,	it	will

save	the	data	it	has	already	decrypted	in	a	�le,	then	use	that	�le	and	load	it	in	Wireshark.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 22/61

This	will	analyze	the	module	rdpwd.sys	and	I	can	�nd	its	functions	in	IDA,	debugging	from	my	database	of

termdd.sys,	when	it	stops	at	any	breakpoint	of	this	driver.

I	already	found	the	important	point:	if	the	module	rdpwd.sys	changes	its	location	by	ASLR,	I	will	have	to	repeat

these	steps	to	relocate	the	breakpoint	correctly.

 

address	=	0xFFFFF880034675E8

�lename=r"C:\Users\ricardo\Desktop\pepe.txt"





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 23/61

size=0x40

out=open(�lename,	"wb"

dbgr	=True

data	=	GetManyBytes(address,	size,	use_dbg=dbgr)

out.write(data)

out.close()

This	script	saves	in	a	�le	the	bytes	pointed	by	variable	"address",	the	amount	saved	will	be	given	by	the

variable	"size",	and	saves	it	in	a	�le	on	my	desktop,	I	will	adapt	it	to	read	the	address	and	size	from	the	registers

at	the	point	of	breakpoint.

address=cpu.r12

size=cpu.rbp

�lename=r"C:\Users\ricardo\Desktop\pepe.txt"

out=open(�lename,	"ab")

dbgr	=True

data	=	GetManyBytes(address,	size,	use_dbg=dbgr)

out.write(data)

This	will	dump	the	bytes	perfectly	to	the	�le.

I	will	use	this	script	in	the	conditional	breakpoint.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 24/61

This	script	made	a	raw	dump,	but	wireshark	only	imports	in	this	format.

 

address=cpu.r12

size=cpu.rbp

�lename=r"C:\Users\ricardo\Desktop\pepe.txt"

out=open(�lename,	"ab")

dbgr	=True

data	=	GetManyBytes(address,	size,	use_dbg=dbgr)

str=""

for	i	in	data:

 	 	 str+=	"%02x	"%ord(i)

out.write(str)

in	Windows	7	32	bits	version	this	is	the	important	point	where	the	decrypted	code	is	parsed,	and	we	can	use

this	script	to	dump	to	a	�le.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 25/61

Windows	7	32	script
address=cpu.eax

size=cpu.ebx

�lename=r"C:\Users\ricardo\Desktop\pepe�f.txt"

out=open(�lename,	"ab")

dbgr	=True

data	=	GetManyBytes(address,	size,	use_dbg=dbgr)

str=""

for	i	in	data:

 	 	 str+=	"%02x	"%ord(i)

out.write(str)

Windows	XP	32	bits	script 
address=cpu.eax

size=cpu.edi

�lename=r"C:\Users\ricardo\Desktop\pepe�f.txt"

out=open(�lename,	"ab")

dbgr	=True





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 26/61

data	=	GetManyBytes(address,	size,	use_dbg=dbgr)

str=""

for	i	in	data:

 	 	str+=	"%02x	"%ord(i)

out.write(str)

This	is	the	similar	point	in	Windows	XP.

 

STEP	3)	Importing	to	Wireshark
This	script	will	save	the	bytes	in	the	format	that	wireshark	will	understand.

When	I	I"Import	from	hex	dump",	I	will	use	the	port "3389/tcp" : "msrdp"  



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 27/61

We	load	our	dump	�le	and	put	the	destination	port	as	3389,	the	source	port	is	not	important.

 

I	add	a	rule	to	decode	port	3389	as	TPKT





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 28/61

That	�le	will	be	decoded	as	TPKT	in	wireshark.

That's	the	complete	script. 



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 29/61

Using	that	script,	the	dump	�le	is	created,	when	it	is	imported	as	a	hexadecimal	�le	in	Wireshark,	it	is	displayed

perfectly.

This	work	can	be	done	also	by	importing	the	SSL	private	key	in	wireshark,	but	I	like	to	do	it	in	the	most	manual

way,	old	school	type.

STEP	4)	More	reversing
We	are	ready	to	receive	and	analyze	our	�rst	package,	but	�rst	we	must	complete	and	analyze	some	more

tasks	that	the	program	performs	after	what	we	saw	before	receiving	the	�rst	package	of	our	data.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 30/61

We	can	see	that	there	are	a	few	more	calls	before	starting	to	receive	data,	a	couple	more	calls	to	the	driver.

The	part	marked	in	red	is	what	we	have	left	to	analyze	from	the	�rst	connection	without	sending	data.

I	will	modify	the	conditional	breakpoint	to	stop	at	the	�rst	MajorFunction	=	0xE.

It	will	stop	when	MajorFunction	=	0xE 



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 31/61

We	arrived	at	IcaDeviceControl.

We	can	see	that	this	call	is	generated	when	the	program	accepts	the	connection,	calling

ZwDeviceIoControlFile	next.

We	can	see	that	IRP	and	IO_STACK_LOCATION	are	maintained	with	the	same	value,	�leobject	has	changed.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 32/61

We	will	leave	the	previous	structure	called	FILE_OBJECT	for	the	previous	call,	and	we	will	make	a	copy	with

the	original	�elds	called	FILE_OBJECT_2,	to	be	used	in	this	call.

The	previous	FILE_OBJECT	was	an	object	that	was	obtained	from	ObReferenceObjectByHandle.

The	new	FILE_OBJECT	has	the	same	structure	but	is	a	di�erent	object,	for	that	reason	we	create	a	new

structure	for	this.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 33/61

We	continue	reversing ProbeAndCaptureUserBu�ers

A	new	chunk	with	the	size	(InputBu�erLenght	+	OutputBu�erLenght)	is	created. 



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 34/61

Stores	the	pointers	to	the	Input	and	Output	bu�ers	chunks.

We	can	see	that	IcaUserProbeAddress	is	similar	to	nt!	MmUserProbeAddress	value

That's	used	to	verify	whether	a	user-speci�ed	address	resides	within	user-mode	memory	areas,	or	not.

If	the	address	is	lower	than IcaUserProbeAddress	resides	in	User	mode	memory	areas,	and	a	second	check	is

performed	to	ensure	than	the	InputUserBu�er	+	InputBu�erLenght	address	is	bigger	than	InputUserBu�er

address.(size	not	negative)





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 35/61

Then	the	data	is	copied	from	the	InputUserBu�er	to	the	chunk_Input_Bu�er	that	has	just	allocated	for	this

purpose.

We	can	see	the	data	that	the	program	copies	from	InputUserBu�er,	it's	not	data	that	we	send	yet.

Since	the	OutputBu�erLength	is	zero,	it	will	not	copy	from	OutputUserBu�er	to	the	chunk_OutputBu�er.

Clears	chunk_OutputBu�er	and	return.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 36/61

Returning	from ProbeAndCaptureUserBu�ers,	we	can	see	that	this	function	copies	the	input	and	output	bu�er

of	the	user	mode	memory	to	the	new	chunks	allocated	in	the	kernel	memory,	for	the	handling	of	said	data	by

the	driver

The	variable	"resource"	points	to	IcaStackDispatchTable.

I	frame	the	area	of	the	table	and	create	a	structure	from	memory	which	I	call	_IcaStackDispatchTable.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 37/61

I	entered	and	started	to	reverse	this	function.

The	�rst	time	we	arrived	here,	the	IOCTL	value	is	38002b.




13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 38/61

We	arrived	to	a	call	to	_IcaPushStack.

Inside	two	allocations	are	performed,	i	named

them chunk_PUSH_STACK_0x488 and chunk_PUSH_STACK_0xA8

When	IOCTL	value	0x38002b	is	used,	we	reach	_IcaLoadSd 

 

We	can	see	the	complete	log	of	the	calls	to	the	driver	with	di�erent	IOCTL	only	in	the	connection	without

sending	data	yet.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 39/61

IO_STACK_LOCATION	0x��fa80061bea90L

IRP	0x��fa80061be9c0L

chunk_CONNECTION	0x��fa8006223510L

IO_STACK_LOCATION	0x��fa80061bea90L

IRP	0x��fa80061be9c0L

FILE_OBJECT	0x��fa8004231860L

chunk_stack_0xBA8	0x��fa80068d63d0L

FILE_OBJECT_2	0x��fa80063307b0L

IOCTL	0x380047L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38002bL

chunk_PUSH_STACK_0x488	0x��fa8006922a20L

chunk_PUSH_STACK_0xa8	0x��fa8005ce0570L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38002bL

chunk_PUSH_STACK_0x488	0x��fa8005f234e0L

chunk_PUSH_STACK_0xa8	0x��fa8006875ba0L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38002bL

chunk_PUSH_STACK_0x488	0x��fa8005daf010L

chunk_PUSH_STACK_0xa8	0x��fa8006324c40L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38003bL

FILE_OBJECT_2	0x��fa8006335ae0L





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 40/61

IOCTL	0x3800c7L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38244fL

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38016fL

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x380173L

FILE_OBJECT_2	0x��fa8006334c90L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x38004bL

IO_STACK_LOCATION	0x��fa8004ceb9d0L

IRP	0x��fa8004ceb900L

FILE_OBJECT	0x��fa8006334c90L

chunk_channel	0x��fa8006923240L

guarda	RDI	DESTINATION	0x��fa8006923240L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x381403L

FILE_OBJECT_2	0x��fa8006335ae0L

IOCTL	0x380148L

I	will	put	conditional	breakpoints	in	each	di�erent	IOCTL,	to	list	the	functions	where	each	one	ends	up.

 

The	IOCTLs	0x380047, 0x38003b, 0x3800c7, 0x38244f, 0x38016f, 0x38004b, 0x381403 	end	in	_IcaCallStack





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 41/61

These	IOCTLs	also	reach	_IcaCallSd

IOCTL 0x380148 does	nothing 

IOCTL 0x380173	reaches	_IcaDriverThread





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 42/61

And	this	last	one	reaches	tdtcp_TdInputThread	also.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 43/61

This	function	is	used	to	receive	the	data	sended	by	the	user.

 

STEP	5) Receiving	data
If	we	continue	running	to	the	point	of	data	entry	breakpoint,	we	can	see	in	the	call	stack	that	it	comes

from tdtcp!	TdInputThread.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 44/61

 

The	server	is	ready	now,	and	waiting	for	our	�rst	send.

 

We	will	analyze	the	packages	and	next	we	will	return	to	the	reversing.

STEP	6)	Analyzing	Packets
Negotiate	Request	package
03	00	00	13	0e	e0	00	00	00	00	00	01	00	08	00	01	00	00	00





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 45/61

Requested	Protocol 

Negotiation	Response	package
The	Response	package	was	similar	only	with Type=0x2 RDP	Negotiation	Response





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 46/61

Connect	Initial	Package
The	package	starts	with 

"\x03\x00\xFF\xFF\x02\xf0\x80" #\xFF\xFF	are	sizes	to	be	calculated	and	smashed	at	the	end

Header 

03	->	TPKT:	TPKT	version	=	3	 00	->	TPKT:	Reserved	=	0	 FF	->	TPKT:	Packet	length	-	high	part	 FF	->	TPKT:

Packet	length	-	low	part

X.224

 02	->	X.224:	Length	indicator	=	2	 f0	->	X.224:	Type	=	0xf0	=	Data	TPDU	 80	->	X.224:	EOT

PDU





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 47/61

"7f	65"	..	--	BER:	Application-De�ned	Type	=	APPLICATION	101,

"82	FF	FF"	..	--	BER:	Type	Length	=	will	be	calculated	and	smashed	at	the	end	in	the	Dos	sample	will	be	0x1b2

"04	01	01"	..	--	Connect-Initial::callingDomainSelector

"04	01	01"	..	--	Connect-Initial::calledDomainSelector

"01	01	�"	..	--	Connect-Initial::upwardFlag	=	TRUE

"30	19"	..	--	Connect-Initial::targetParameters	(25	bytes)

"02	01	22"	..	--	DomainParameters::maxChannelIds	=	34

"02	01	02"	..	--	DomainParameters::maxUserIds	=	2

"02	01	00"	..	--	DomainParameters::maxTokenIds	=	0

"02	01	01"	..	--	DomainParameters::numPriorities	=	1

"02	01	00"	..	--	DomainParameters::minThroughput	=	0

"02	01	01"	..	--	DomainParameters::maxHeight	=	1

"02	02	�	�"	..	--	DomainParameters::maxMCSPDUsize	=	65535

"02	01	02"	..	--	DomainParameters::protocolVersion	=	2

"30	19"	..	--	Connect-Initial::minimumParameters	(25	bytes)

"02	01	01"	..	--	DomainParameters::maxChannelIds	=	1

"02	01	01"	..	--	DomainParameters::maxUserIds	=	1

"02	01	01"	..	--	DomainParameters::maxTokenIds	=	1

"02	01	01"	..	--	DomainParameters::numPriorities	=	1

"02	01	00"	..	--	DomainParameters::minThroughput	=	0

"02	01	01"	..	--	DomainParameters::maxHeight	=	1

"02	02	04	20"	..	--	DomainParameters::maxMCSPDUsize	=	1056

"02	01	02"	..	--	DomainParameters::protocolVersion	=	2

"30	1c"	..	--	Connect-Initial::maximumParameters	(28	bytes)

"02	02	�	�"	..	--	DomainParameters::maxChannelIds	=	65535

"02	02	fc	17"	..	--	DomainParameters::maxUserIds	=	64535

"02	02	�	�"	..	--	DomainParameters::maxTokenIds	=	65535

"02	01	01"	..	--	DomainParameters::numPriorities	=	1

"02	01	00"	..	--	DomainParameters::minThroughput	=	0

"02	01	01"	..	--	DomainParameters::maxHeight	=	1

"02	02	�	�"	..	--	DomainParameters::maxMCSPDUsize	=	65535

"02	01	02"	..	--	DomainParameters::protocolVersion	=	2

"04	82	FF	FF"	..	--	Connect-Initial::userData	(calculated	at	the	end	in	the	DoS	example	will	be	0x151	bytes)





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 48/61

"00	05"	..	--	object	length	=	5	bytes

"00	14	7c	00	01"	..	--	object

"81	48"	..	--	ConnectData::connectPDU	length	=	0x48	bytes

"00	08	00	10	00	01	c0	00	44	75	63	61"	..	--	PER	encoded	(ALIGNED	variant	of	BASIC-PER)	GCC	Conference

Create	Request	PDU

"81	FF"	..	--	UserData::value	length	(calculated	at	the	end	in	the	DoS	example	will	be	0x13a	bytes)

#-------------

"01	c0	ea	00"	..	--	TS_UD_HEADER::type	=	CS_CORE	(0xc001),	length	=	0xea	bytes

"04	00	08	00"	..	--	TS_UD_CS_CORE::version	=	0x0008004

"00	05"	..	--	TS_UD_CS_CORE::desktopWidth	=	1280

"20	03"	..	--	TS_UD_CS_CORE::desktopHeight	=	1024

"01	ca"	..	--	TS_UD_CS_CORE::colorDepth	=	RNS_UD_COLOR_8BPP	(0xca01)

"03	aa"	..	--	TS_UD_CS_CORE::SASSequence

"09	04	00	00"	..	--	TS_UD_CS_CORE::keyboardLayout	=	0x409	=	1033	=	English	(US)

"28	0a	00	00"	..	--	TS_UD_CS_CORE::clientBuild	=	2600

"45	00	4d	00	50	00	2d	00	4c	00	41	00	50	00	2d	00	"	..

"30	00	30	00	31	00	34	00	00	00	00	00	00	00	00	00	"	..	--	TS_UD_CS_CORE::clientName	=	EMP-LAP-0014

"04	00	00	00"	..	--	TS_UD_CS_CORE::keyboardType

"00	00	00	00"	..	--	TS_UD_CS_CORE::keyboardSubtype

"0c	00	00	00"	..	--	TS_UD_CS_CORE::keyboardFunctionKey

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..	--	TS_UD_CS_CORE::imeFileName	=	""

"01	ca"	..	--	TS_UD_CS_CORE::postBeta2ColorDepth	=	RNS_UD_COLOR_8BPP	(0xca01)

"01	00"	..	--	TS_UD_CS_CORE::clientProductId

"00	00	00	00"	..	--	TS_UD_CS_CORE::serialNumber

"18	00"	..	--	TS_UD_CS_CORE::highColorDepth	=	24	bpp

"07	00"	..	--	TS_UD_CS_CORE::supportedColorDepths	=	24	bpp

"01	00"	..	--	TS_UD_CS_CORE::earlyCapabilityFlags

  



13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 49/61

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..

"00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	"	..	--	TS_UD_CS_CORE::clientDigProductId

07	->	TS_UD_CS_CORE::connectionType	=	7

00	->	TS_UD_CS_CORE::pad1octet

01	00	00	00	->	TS_UD_CS_CORE::serverSelectedProtocol

#---------------

04	c0	0c	00	->	TS_UD_HEADER::type	=	CS_CLUSTER	(0xc004),	length	=	12	bytes

"15	00	00	00"	..	--	TS_UD_CS_CLUSTER::Flags	=	0x15 f	(REDIRECTION_SUPPORTED	|	REDIRECTION_VERSION3)

"00	00	00	00"	..	--	TS_UD_CS_CLUSTER::RedirectedSessionID

#------------

"02	c0	0c	00"	--	TS_UD_HEADER::type	=	CS_SECURITY	(0xc002),	length	=	12	bytes

"1b	00	00	00"	..	--	TS_UD_CS_SEC::encryptionMethods

"00	00	00	00"	..	--	TS_UD_CS_SEC::extEncryptionMethods

"03	c0	38	00"	..	--	TS_UD_HEADER::type	=	CS_NET	(0xc003),	length	=	0x38	bytes

In	this	package	we	need	to	set	the	user	channels,	and	a	MS_T120	channel	needs	to	be	included	in	the	list.

Erect	Domain	Package

 





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 50/61

 	0x04:	type	ErectDomainRequest

 	0x01: 	subHeight	length	=	1	byte

 	0x00	:	subHeight	=	0

 	0x01: 	subInterval	length	=	1	byte

 	0x00: 	subInterval	=	0

 

User	Attach	Packet	package





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 51/61

We	need	to	analyze	the	response.

03	00	00	0b	02	f0	80	2e	00	00 07





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 52/61

The	last	byte	is	the	initiator,	we	need	to	strip	from	the	response	to	use	in	the	next	packet.

Channel	Join	request	package
Building	the	package

 	 	 	 	 	 	 	xv1 = (chan_num) / 256 	 

 	 	 	 	 	 	 val = (chan_num) % 256 	 

 	 	 	 	 	 	 

'\x03\x00\x00\x0c\x02\xf0\x80\x38\x00' + initiator + chr(xv1) + chr(val) 

 

For	channel	1003	by	example





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 53/61

 

 	 	 	 	 	 	 	xv1 = (1003) / 256 	 =	3 

 

 	 	 	 	 	 	 val = (1003) % 256 	 =	235

 

 	 	 	 	 	 	 

'\x03\x00\x00\x0c\x02\xf0\x80\x38\x00' + initiator + chr(3) + chr(235) 

 

 

 

0x38:	channelJoinRequest	(14)





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 54/61

All	channel	join	packages	are	similar,	the	only	thing	that	changes	are	the	last	two	bytes	that	correspond	to	the

channel	number. 

Channel	Join	Con�rm	Response	package
The	response	was

03	00	00	0f	02	f0	80 3e 00	00	07	03	eb	03	eb

0x3e:channelJoinCon�rm	(15)





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 55/61

result:	rt_succesful	(0x0)

The	packet	has	the	same	initiator	and	channelid	values	than	the	request	to	the	same	channel.

 

When	all	the	channels	response	the	Join	Request,	the	next	package	sended	is	send	Data	Request.

Client	Info	PDU or Send	Data	Request	Package





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 56/61

The	remaining	packages	are	important	for	the	exploitation,	so	for	now	we	will	not	show	them	in	this	�rst

delivery.

STEP	7)	The	vulnerability
The	program	allocate	a	channel MS_T120 by	default,	the	user	can	set	di�erent	channels	in	the	packages.

This	is	the	di�	of	the	function	named	IcabindVirtualChannels

This	is	the	patch	for	the	Windows	XP	version,	which	its	logic	is	similar	for	every	vulnerable	windows	version,

when	the	program	compares	the	string	MS_T120	with	the	name	of	each	channel,	the	pointer	is	forced	to	be

stored	in	a	�xed	position	of	the	table,	forcing	to	use	the	value	0x1f	to	calculate	the	place	to	save	it	.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 57/61

In	the	vulnerable	version,	the	pointer	is	stored	using	the	channel	number	to	calculate	the	position	in	the

channel	table,	and	we	will	have	two	pointers	stored	in	di�erent	locations,	pointing	to	the	same	chunk.

If	the	user	set	a	channel MS_T120	and	send	crafted	data	to	that	channel,	the	program	will	allocate	a	chunk	for

that,	but	will	store	two	di�erent	pointers	to	that	chunk,	after	that	the	program	frees	the	chunk,	but	the	data	of

the	freed	chunk	is	incorrectly	accessed,	performing	a	USE	AFTER	FREE	vulnerability.

The	chunk	is	freed	here

Then	the	chunk	is	accessed	after	the	free	here,	EBX	will	point	to	the	freed	chunk.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 58/61

If	a	perfect	pool	spray	is	performed,	using	the	correct	chunk	size,	we	can	control	the	execution	�ow,	the	value

of	EAX	controlled	by	us,	EBX	point	to	our	chunk,	EAX	=[EBX+0x8c] is	controlled	by	us	too.

STEP	8)	Pool	spray
There	is	a	point	in	the	code	that	let	us	allocate	our	data	with	size	controlled,	and	the	same	type	of	pool.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 59/61

We	can	send	bunch	of	crafted	packages	to	reach	this	point,	if	this	packages	have	the	right	size	can	�ll	the

freed	chunk,	with	our	data.

In	order	to	get	the	right	size	is	necessary	look	at	the	function	IcaAllocateChannel.

In	Windows	7	32	bits,	the	size	of	each	chunk	of	the	pool	spray	should	be 0xc8.





13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 60/61

For	Windows	XP	32	bits	that	size	should	be	0x8c.

 

This	pool	spray	remain	in	this	loop	allocating	with	the	right	size,	and	we	can	�ll	the	freed	chunk	with	our	own

data	to	control	the	code	execution	in	the	CALL	(IcaChannelInputInternal	+	0x118)

Be	happy

Ricardo	Narvaja




13/08/2019 Low-level Reversing of BLUEKEEP vulnerability (CVE-2019-0708) | Core Security

https://www.coresecurity.com/node/63548 61/61

(//www.addthis.com/bookmark.php?v=300)	(//www.addthis.com/bookmark.php?v=300)
(//www.addthis.com/bookmark.php?v=300)	(//www.addthis.com/bookmark.php?v=300)



https://www.addthis.com/bookmark.php?v=300
https://www.addthis.com/bookmark.php?v=300
https://www.addthis.com/bookmark.php?v=300
https://www.addthis.com/bookmark.php?v=300

