
Exploita�on of Windows CVE-2019-0708
(BlueKeep): Three Ways to Write Data into the
Kernel with RDP PDU

9,291 people reacted

 17 13 min. read

Execu�ve Summary
In May 2019, Microso� released an out-of-band patch update for remote code execu�on vulnerability CVE-
2019-0708, which is also known as as “BlueKeep” and resides in code to Remote Desktop Services (RDS). This
vulnerability is pre-authen�ca�on and requires no user interac�on, making it par�cularly dangerous as it has
the unse�ling poten�al to be weaponized into a destruc�ve exploit. If successfully exploited, this vulnerability
could execute arbitrary code with “system” privileges. The Microso� Security Response Center advisory
indicates this vulnerability may also be wormable, a behavior seen in a�acks including Wannacry and
EsteemAudit. Understanding the seriousness of this vulnerability and its poten�al impact to the public,
Microso� took the rare step of releasing a patch for the no longer supported Windows XP opera�ng system, in
a bid to protect Windows users.

With poten�al global catastrophic ramifica�ons, Palo Alto Networks Unit 42 researchers felt it was important
to analyze this vulnerability to understand the inner workings of RDS and how it could be exploited. Our
research dives deep into the RDP internals and how they can be leveraged to gain code execu�on on an
unpatched host. This blog discusses how Bitmap Cache protocol data unit (PDU), Refresh Rect PDU, and
RDPDR Client Name Request PDU can be used to write data into kernel memory.

Since the patch was released in May, this vulnerability has received a lot of a�en�on from the Computer
Security industry. It is only a ma�er of �me before a working exploit is released in the wild. The findings of our
research highlight the risks if vulnerable systems are le� unpatched.

Bitmap Cache PDU


By Tao Yan and Jin Chen
August 29, 2019 at 6:00 AM
Category: Unit 42
Tags: Bluekeep, CVE-2019-0708, RDP

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0708
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0708
https://unit42.paloaltonetworks.com/author/tao-yan/
https://unit42.paloaltonetworks.com/author/jin-chen/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/bluekeep/
https://unit42.paloaltonetworks.com/tag/cve-2019-0708/
https://unit42.paloaltonetworks.com/tag/rdp/

Per MS-RDPBCGR (Remote Desktop Protocol: Basic Connec�vity and Graphics Remo�ng) documenta�on, the
full name of bitmap cache PDU is TS_BITMAPCACHE_PERSISTENT_LIST_PDU, which is considered as
Persistent Key List PDU Data and embeds in the Persistent Key List PDU. The Persistent Key List PDU is an
RDP Connec�on Sequence PDU sent from client to server during the

Connec�on Finaliza�on phase of the RDP Connec�on Sequence, as shown in Figure 1.

Figure 1. Remote Desktop Protocol (RDP) connec�on sequence

The Persistent Key List PDU header is the general RDP PDU header and is constructed as follows and shown in
Figure 2: tpktHeader (4 bytes) + x224Data (3 bytes) + mcsSDrq (variable) + securityHeader (variable).

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c

Figure 2. Client Persistent Key List PDU

Per MS-RDPBCGR documenta�on, the TS_BITMAPCACHE_PERSISTENT_LIST_PDU is a structure that
contains a list of cached bitmap keys saved from Cache Bitmap (Revision 2) Orders ([MS-RDPEGDI] sec�on
2.2.2.2.1.2.3) that were sent in previous sessions as shown in Figure 3.

Figure 3. Persistent Key List PDU Data (BITMAPCACHE PERSISTENT LIST PDU)

By design, the Bitmap Cache PDU is used for the RDP client to no�fy the server that it has a local copy of the
bitmap associated with the key, which indicates that the server does not need to retransmit the bitmap to the
client. Based on the MS-RDPBCGR documenta�on, the Bitmap PDU has four characteris�cs:

The RDP server will allocate a kernel pool to store the cached bitmap keys.

The size of the kernel pool allocated by the RDP server can be controlled by “WORD value”
numEntriesCacheX[x can be from 0 to 4] fields in the structure and totalEntriesCacheX[x can be from 0 to 4] in

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c

the BITMAPCACHE PERSISTENT LIST structure from the RDP client.

The Bitmap Cache PDU can be sent legi�mately mul�ple �mes because the bitmap keys can be sent in
more than one Persistent Key List PDU, with each PDU being marked using flags in the bBitMask field.

There is a limit to 169 for the number of bitmap keys.

Based on these four characteris�cs of BITMAPCACHE PERSISTENT LIST PDU, it appears to be a good
candidate to write arbitrary data into the kernel if either the number of bitmap keys limit to 169 can be
bypassed, or the RDP developers in Microso� didn’t implement it according to that limit.

How to write data into kernel with Bitmap Cache
PDU
According to MS-RDPBCGR documenta�on, a normal decrypted BITMAPCACHE PERSISTENT LIST PDU is
shown below:

f2 00 -> TS_SHARECONTROLHEADER::totalLength = 0x00f2 = 242 bytes
17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017
0x0017
= 0x0010 | 0x0007
= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU
ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007
ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea
00 -> TS_SHAREDATAHEADER::pad1
01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)
00 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0
2b -> TS_SHAREDATAHEADER::pduType2 =
PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43)
00 -> TS_SHAREDATAHEADER::generalCompressedType = 0
00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[0] = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[1] = 0
19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[2] = 0x19 = 25
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[3] = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[4] = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[0] = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[1] = 0
19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[2] = 0x19 = 25
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[3] = 0
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[4] = 0
03 -> TS_BITMAPCACHE_PERSISTENT_LIST::bBitMask = 0x03
0x03
= 0x01 | 0x02
= PERSIST_FIRST_PDU | PERSIST_LAST_PDU
00 -> TS_BITMAPCACHE_PERSISTENT_LIST::Pad2
00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::Pad3
TS_BITMAPCACHE_PERSISTENT_LIST::entries:
a3 1e 51 16 -> Cache 2, Key 0, Low 32-bits (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
48 29 22 78 -> Cache 2, Key 0, High 32-bits (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
61 f7 89 9c -> Cache 2, Key 1, Low 32-bits (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)
cd a9 66 a8 -> Cache 2, Key 1, High 32-bits (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)
…

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c

In kernel module RDPWD.sys, the func�on rou�ne ShareClass::SBC_HandlePersistentCacheList is responsible
for parsing BITMAPCACHE PERSISTENT LIST PDU. When the bBitMask field in the structure is set to a bit
value of 0x01, it indicates the current PDU is PERSIST FIRST PDU. SBC_HandlePersistentCacheList will then
call WDLIBRT_MemAlloc to allocate a kernel pool (allocate kernel memory) to store persistent bitmap cache
keys as shown in Figure 4. A value of 0x00 indicates the current PDU is PERSIST MIDDLE PDU. A value of
0x02 indicates the current PDU is PERSIST LAST PDU. When parsing PERSIST MIDDLE PDU and PERSIST
LAST PDU, SBC_HandlePersistentCacheList will copy bitmap cache keys to the memory allocated before as
shown in Figure 5.

Figure 4. SBC_HandlePersistentCacheList pool alloca�on and totalEntriesCacheLimit check

Figure 5. SBC_HandlePersistentCacheList copy bitmap cache keys

The stack trace on Windows 7 x86 and the second argument to TS_BITMAPCACHE_PERSISTENT_LIST
structure of SBC_HandlePersistentCacheList are shown in Figure 6 and Figure 7.

Figure 6. SBC_HandlePersistentCacheList stack trace

Figure 7. TS_BITMAPCACHE_PERSISTENT_LIST structure as the second argument of SBC_HandlePersistentCacheList

As seen in Figure 4, bitmapCacheListPoolLen = 0xC * (total length + 4) and the total length =
totalEntriesCache0 + totalEntriesCache1 + totalEntriesCache2 + totalEntriesCache3 + totalEntriesCache4.
Based on this formula we can set “WORD value” totalEntriesCacheX=0xffff to make the
bitmapCacheListPoolLen to the maximum value. However, there is a totalEntriesCacheLimit check for each
totalEntriesCacheX shown in Figure 8. The totalEntriesCacheLimitX is from the
TS_BITMAPCACHE_CAPABILITYSET_REV2 structure, which is ini�ated in the
CAPAPI_LOAD_TS_BITMAPCACHE_CAPABILITYSET_REV2 func�on when calling DCS_Init by RDPWD,
shown in Figure 8. This will be combined in the
CAPAPI_COMBINE_TS_BITMAPCACHE_CAPABILITYSET_REV2 func�on when parsing ac�ve confirm PDU, as
shown in Figure 9.

Figure 8. RDPWD!CAPAPI_LOAD_TS_BITMAPCACHE_CAPABILITYSET_REV2

Figure 9. RDPWD!CAPAPI_COMBINE_TS_BITMAPCACHE_CAPABILITYSET_REV2

CAPAPI_COMBINE_TS_BITMAPCACHE_CAPABILITYSET_REV2 will combine the server ini�ated
NumCellCaches (0x03) and totalEntriesCacheLimit[0-4] (0x258, 0x258, 0x10000, 0x0, 0x0) with client request
NumCellCaches (0x03) and totalEntriesCache[0-4] (0x80000258, 0x80000258, 0x8000fffc, 0x0, 0x0), shown
with edx and esi registers in Figure 9. The client can control NumCellCaches and totalEntriesCache[0-4], shown
in Figure 10, but they cannot be over the server ini�ated NumCellCaches (0x03) and totalEntriesCacheLimit[0-
4] (0x258, 0x258, 0x10000, 0x0, 0x0) shown in Figure 11.

Figure 10. TS_BITMAPCACHE_CAPABILITYSET_REV2

Figure 11. CAPAPI_COMBINE_TS_BITMAPCACHE_CAPABILITYSET_REV2 func�on

With this knowledge we can compute the maximum bitmapCacheListPoolLen = 0xC * (0x10000 + 0x258 +
0x258 + 4) = 0xc3870 and theore�cally we can control 0x8 * (0x10000 + 0x258 + 0x258 + 4) = 0x825a0 bytes
data in the kernel pool, as shown in Figure 12.

Figure 12. Persistent Key List PDU Memory dump

However, we observed that not all data can be controlled by the RDP client in bitmap cache list pool as
expected. There is a 4 byte uncontrolled data (the index value) between each 8 bytes controlled data which is
not friendly for shellcode. Addi�onally the 0xc3870 sized kernel pool cannot be allocated mul�ple �mes due to
the fact the Persistent Key List PDU can only be sent once legi�mately. However, there are s�ll specific
sta�s�cal characteris�cs that the kernel pool will be allocated at the same memory address. Besides, there is
always a 0x2b522c (on x86) or 0x2b5240 (on x64) kernel sized pool allocated before bitmap cache list pool
alloca�on which could be useful for heap grooming especially on x64 as shown in Figure 13.

Figure 13. Persistent Key List PDU sta�s�cal characteris�cs

Refresh Rect PDU
Per MS-RDPBCGR documenta�on, the Refresh Rect PDU allows the RDP client to request that the server
redraw one or more rectangles of the session screen area. The structure includes the general PDU header and
the refreshRectPduData (variable) shown in Figure 14.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c

Figure 14. Refresh Rect PDU Data

The numberOfAreas field is an 8-bit unsigned integer to define the number of Inclusive Rectangle structures in
the areasToRefresh field. The areaToRefresh field is an array of TS_RECTANGLE16 structures shown in Figure
15.

Figure 15. Inclusive Rectangle (TS_RECTANGLE16)

The Refresh Rect PDU is designed to no�fy the server with a series of arrays of screen area “Inclusive
Rectangles” to make the server redraw one or more rectangles of the session screen area. It is based on default
opened channel with the channel ID 0x03ea (Server Channel ID). A�er the connec�on sequence is finished, as
shown in Figure 1, Refresh Rect PDU can be received/parsed by the RDP server and most importantly, can be
sent for mul�ple �mes legi�mately. Although limited to only 8 bytes for TS_RECTANGLE16 structure, which
means only 8 bytes and not massive data can be controlled by the RDP client, it is s�ll a very good candidate to
write arbitrary data into the kernel.

How to write data into kernel with Refresh Rect PDU
A normal decrypted Refresh Rect PDU is shown in Figure 16.

Figure 16. A decrypted Refresh Rect PDU

The kernel module RDPWD.sys code func�on WDW_InvalidateRect is responsible for parsing Refresh Rect
PDU as seen in Figure 17, below.

Figure 17. RDPWD!WDW_InvalidateRect stack trace

As shown in Figure 18, WDW_InvalidateRect func�on will parse Refresh Rect PDU stream and retrieve the
numberOfAreas field from the stream as the loop count. Being a byte type field, the maximum value of
numberOfAreas is 0xFF, so the maximum loop count is 0xFF. In the loop, WDW_InvalidateRect func�on will
get le�, top, right, and bo�om fields in TS_RECTANGLE16 structure, put them in a structure on the stack and
make it as the 5 parameter of WDICART_IcaChannelInput. To be men�oned here, the 6 parameter of
WDICART_IcaChannelInput is the constant 0x808, and we will show how it helps for an efficient spray.

Figure 18. RDPWD!WDW_InvalidateRect func�on

WDICART_IcaChannelInput will eventually call kernel module termdd.sys func�on IcaChannelInputInternal. As
shown in Figure 19, if a series of condi�on checks are True, the func�on IcaChannelInputInternal will call
ExAllocatePoolWithTag to allocate an inputSize_6th_para + 0x20 sized kernel pool. As such, when the func�on
IcaChannelInputInternal is called by RDPWD!WDW_InvalidateRect, inputSize_6th_para=0x808, and the size of
the kernel pool is 0x828.

th th

Figure 19. termdd!IcaChannelInputInternal ExAllocatePoolWithTag and memcpy

If the kernel pool alloca�on is successful, memcpy will be called to copy input_buffer_2 to the newly allocated
kernel pool memory. Figure 20 shows the parameters of memcpy when the caller is
RDPWD!WDW_InvalidateRect.

Figure 20. termdd!IcaChannelInputInternal memcpy windbg dump

Interes�ngly, the source address of the func�on memcpy is from the stRect structure on the stack of
RDPWD!WDW_InvalidateRect and only the first 3 DWORDs are set in RDPWD!WDW_InvalidateRect, as
shown in Figure 21. The le�over memory is unini�alized content on the stack and it is easy to cause
informa�on leaks. Besides, using a 0x808 sized memory to store 12 bytes of data is also spray-friendly.

Figure 21. RDPWD!WDW_InvalidateRect stRect structure set

Using this informa�on, when the RDP client sends one Refresh Rect PDU with the numberOfAreas field of
0xFF, the RDP server will call termdd!IcaChannelInputInternal 0xFF �mes. Each
termdd!IcaChannelInputInternal call will allocate 0x828 kernel pool memory and copy eight bytes of client
controlled TS_RECTANGLE16 structure to that kernel pool. So, one Refresh Rect PDU with numberOfAreas
field of 0xFF will allocate 0xFF number of 0x828 sized kernel pools. In theory if the RDP client sends Refresh
Rect PDU 0x200 �mes, the RDP server will allocate around 0x20000 of 0x828 size non-paged kernel pools.
Considering 0x828 sized kernel pool will be aligned by 0x1000, they will span a very large scope of the kernel
pool and at the same �me, client controlled eight bytes of data would be copied at the fixed 0x02c offset in
each 0x1000 kernel pool. This is demonstrated in Figure 22 we get a stable pool spray in the kernel with
Refresh Rect PDU.

Figure 22. RDPWD!WDW_InvalidateRect spray

There are situa�ons where ExAllocatePoolWithTag and memcpy are not be called when a pointer (represented
as variable v14 in Figure 23) is modified by termdd!_IcaQueueReadChannelRequest and the comparison will be
False as shown in Figure 23, the route will enter rou�ne _IcaCopyDataToUserBuffer which leads to an
unsuccessful pool alloca�on. However, when sending Refresh Rect PDU many �mes, we can s�ll get a
successful kernel pool spray even though there are some unsuccessful pool alloca�ons.

Besides, there are situa�ons where some kernel pools may be freed a�er the RDP server is finished using
them, but the content of the kernel pool will not be cleared, making the data which we spray into the kernel
valid to use in the exploit.

Figure 23. termdd!IcaChannelInputInternal IcaCopyDataToUserBuffer

RDPDR Client Name Request PDU
Per MS-RDPEFS documenta�on RDPDR Client Name Request PDU is specified in [Remote Desktop Protocol:
File System Virtual Channel Extension] which runs over a sta�c virtual channel with the name RDPDR. The
purpose of the MS-RDPEFS protocol is to redirect access from the server to the client file system. Client Name
Request is the second PDU sent from client to server as shown in Figure 24.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpefs/34d9de58-b2b5-40b6-b970-f82d4603bdb5

Figure 24. File System Virtual Channel Extension protocol ini�aliza�on

Client Name Request PDU is used for the client to send its machine name to the server as shown in Figure 25.

Figure 25. Client Name Request (DR_CORE_CLIENT_NAME_REQ)

The header is four bytes RDPDR_HEADER with the Component field set to RDPDR_CTYP_CORE and the
PacketId field set to PAKID_CORE_CLIENT_NAME. The ComputerNameLen field (4 bytes) is a 32-bit unsigned
integer that specifies the number of bytes in the ComputerName field. The ComputerName field (variable) is a
variable-length array of ASCII or Unicode characters, the format of which is determined by the UnicodeFlag
field. This is a string that iden�fies the client computer name.

How to write data into kernel with RDPDR Client
Name Request PDU
The following can be said about the RDPDR Client Name Request PDU. The Client Name Request PDU can be
sent for mul�ple �mes legi�mately, for each request the RDP server will allocate a kernel pool to store this
informa�on, and most importantly, the content and length of the PDU can be fully controlled by the RDP
client. This makes it an excellent choice to write data into the kernel memory. A typical RDPDR Client Name
Request PDU is shown in Figure 26.

Figure 26. client name request memory dump

When the RDP server receives a RDPDR Client Name Request PDU, the func�on IcaChannelInputInternal in
the kernel module termdd.sys is called to dispatch channel data first, then the RDPDR module will be called to
parse the data part of the Client Name Request PDU. The func�on IcaChannelInputInternal for Client Name
Request PDU applies the same code logic as for Refresh Rect PDU. It will call ExAllocatePoolWithTag to
allocate kernel memory with tag TSic and use memcpy to copy the client name request data to the newly
allocated kernel memory as shown in Figure 27.

Figure 27. client name request

So far, we have demonstrated the copied data content and length are both controlled by the RDP client, and
the Client Name Request PDU can be sent mul�ple �mes legi�mately. Due to its flexibility and exploit-friendly
characteris�cs the Client Name Request PDU can be used to reclaim the freed kernel pool in UAF (Use A�er
Free) vulnerability exploit and also can be used to write the shellcode into the kernel pool, even can be used to
spray consecu�ve client controlled data into the kernel memory.

As shown in Figure 28 we successfully obtained a stable pool alloca�on and write client-controlled data into
the kernel pools with RDPDR Client Name Request PDU.

Figure 28. client name request stable pool alloca�on

Detec�on and Mi�ga�on
CVE-2019-0708 is a severe vulnerability targe�ng RDP and can be exploitable with unauthen�cated access.
According to the MSRC advisory, Windows XP, Windows 2003, Windows 7 and Windows 2008 are all
vulnerable. Organiza�ons using those Windows versions are encouraged to patch their systems to prevent this
threat. Users should also disable or restrict access to RDP from external sources when possible.

Palo Alto Networks customers are protected from this vulnerability by:

Traps prevents exploita�on of this vulnerability on Windows XP, Windows 7, and Windows Server 2003
and 2008 hosts.

Threat Preven�on detects the scanner/exploit.

Conclusion
In this blog we introduced three ways to write data into the kernel with RDP PDU.

Bitmap cache PDU allows the RDP server to allocate a 0xc3870 sized kernel pool after a 0x2b5200 sized
pool allocation and write controllable data into it, but cannot perform the 0xc3870 sized kernel pool allocation
multiple times.

Refresh Rect PDU can spray many 0x828 sized kernel pools which are 0x1000 aligned and write 8
controllable bytes into each 0x828 sized kernel pool.

RDPDR Client Name Request PDU can spray controllable sized kernel pool and fill them with controllable
data.

We believe that there are other yet-to-be-documented ways to make CVE-2019-0708 exploitation easier and
more stable. Users should take steps to ensure their vulnerable systems are protected through one of the
mitigation steps listed above.

Thank you to Mike Harbison for his assistance in edi�ng this report.

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0708

