

By Haboob Team

A Purple Team Study into

“PowerLessShell” Tool

 1

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Table of Contents
1. Introduction .. 2

2. What Is PowerLessShell? .. 2

3. Generating a Payload using “PowerLessShell” Tool ... 3

4. Testing “PowerLessShell” Generated Payload ... 6

5. Hunting for “PowerLessShell” Artifacts .. 7

6. Extra layer of obfuscation ... 14

7. Detecting “PowerLessShell” Payload Execution Using Behavioral Monitoring .. 16

8. Yara and Sigma Rules to Detect “PowerLessShell” ... 20

9. Conclusion .. 22

10. References ... 23

 2

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

1. Introduction
Since the introduction of “Powershell” by Microsoft, red teamers and adversaries alike have started to

abuse it to perform their malicious activities away from praying eyes. Later on, security systems have

evolved to monitor “powershell.exe” process instances to monitor for such activities. This made

adversaries look for ways to execute “Powershell” code without spawning a “powershell.exe” instance to

evade security monitoring and detection. As a consequence of this endeavor, several offensive tools were

built to achieve this objective, one of which is a tool named “PowerLessShell”.

This paper will cover what is known as “PowerLessShell”, what is it, how it works and how attackers use

it for their offensive activities, and what artifacts is left behind for blue teamers to detect its execution.

2. What Is PowerLessShell?
PowerLessShell is a python-based tool, which generates malicious payloads that abuse Microsoft Build

Engine (MSBuild) to execute Powershell commands and scripts without starting an instance of

“powershell.exe”. The tool achieves this objective by using “MSBuild” to compile and run a malicious C#

code on the fly, which when compiled and executed, will use “Microsoft.Build.Tasks.v4.0.dll” dynamically

loaded library to create a Powershell Object “PSObject” that is used to execute “Powershell” code

through the DLL’s exported functions without spawning a “powershell.exe” instance. The tool also adds

an extra layer of obfuscation, which works by copying “MSbuild.exe” executable into a random location,

and changes its name to either a random name or to a name of a well-known process to evade

detection rules set on “MSbuild.exe”.

 3

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 1: This figure is taken from the tool’s Github repository [1]

3. Generating a Payload using “PowerLessShell” Tool
Usage of the tool is super easy, you can start the tool using “python PowerLessShell.py” and an

interactive python shell will run, and user input is taken through a “question/answer” based style,

explained as the following:

 4

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

• First is to choose between a Powershell command or a shellcode, the goal of this publication is

to verify that no “Powershell” instance runs when powershell commands are executed, so we’ll

choose “Powershell”.

• Second option is to provide the full path for the Powershell script we wish to run. In our case, it

is given the path for “shell.ps1” which is a simple Powershell-based reverse shell that is

available within the Kali Linux distribution.

Figure 2: A sample of the contents of “script.ps1”. Highlighted is the invocation of the reverse shell procedure

• Third option is to provide the output path and name for the C# project code that will be

generated by “PowerLessShell”.

• Fourth option is to provide the USERDOMAIN condition, which executes the payload only if the

compromised machine is within the domain you specified in this condition. This will prevent your

payload from running outside of the engagement scope if you are using it for a red team exercise.

[4]

• The fifth and last option is a Boolean choice between using a well-known process name such as

(“svchost.exe”, “Explorer.exe”, etc) or a randomly generated process name from 5-25 characters.

 5

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 3: Shows the interactive interface of “PowerLessShell” script

Figure 4: The output files generated by PowerLessShell tool

 6

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

When the tool has finished execution, it will generate two files as shown in (Fig.4), the first one is the

malicious C# project under the name and path you chose on step three with the extension “.csproj”, and

a “.bat” file which is a windows batch file that triggers the payload when executed.

To deliver the payload and execute it, you have to deliver the C sharp project file and optionally deliver

the windows batch file and execute it or you can directly trigger the C sharp payload from the command

line with MSBuild by executing the following command:

C:\WINDOWS\MICROSOFT.NET\Framework64\v4.0.30319\msbuild.exe <path to .csproj file>

Figure 5: Triggering the payload directly through the command line

4. Testing “PowerLessShell” Generated Payload
Because we chose a reverse shell for the “Powershell” code provided to “PowerLessShell”, a listener must

be setup to receive the reverse shell connection once the payload has been executed. To achieve that

objective, “Netcat” tool will be used.

Once the attacker successfully delivers the payload and it is executed successfully on the target machine.

A reverse shell connection will be initiated to the attacker machine.

 7

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 6: A screenshot of the attacker’s netcat listener successfully receiving a working reverse shell

From a digital forensics prospective, right after the payload is successfully executed and the C Sharp

code is deleted from disk, almost all Powershell activities after this point will be undetectable when

performing any disk or windows events forensics as shown on the next section.

Figure 7: netstat command on the compromised machine

On the compromised machine “192.168.70.141” you can see in “netstat” command that the reverse

connection to the attacker machine “192.168.70.130” has been established on the selected port “4444”,

now the attacker has a reverse shell on the victim machine successfully and can perform any powershell

commands and scripts away from praying eyes.

5. Hunting for “PowerLessShell” Artifacts
Since all “Powershell” activity after the execution of the initial “.csproj” payload will be undetected, we

will focus on threat hunting for evidence and traces for the execution of the initial “PowerLessShell”

 8

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

payload. The first place where we can look for such traces can be found in windows events logs,

specifically in “Windows Powershell” event logs. A total of “9” events will be recorded after the execution

of the “.csproj” payload file, with the following details (In order):

NO Event ID Provider HostApplication

1 400 Engine state is changed from

None to Available

<RandomName.exe> <Random Chars>

2 600 “Alias” is Started <RandomName.exe> <Random Chars>

3 600 “Environment” is Started <RandomName.exe> <Random Chars>

4 600 “FileSystem” is Started <RandomName.exe> <Random Chars>

5 600 “Function” is Started <RandomName.exe> <Random Chars>

6 600 “Registry” is Started <RandomName.exe> <Random Chars>

7 600 “Variable” is Started <RandomName.exe> <Random Chars>

8 600 “Certificate” is Started <RandomName.exe> <Random Chars>

9 600 “WSMan” is Started <RandomName.exe> <Random Chars>

 9

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 8 Windows Powershell event log, shows the instance name and parameter

Note that these 9 events are the only solid piece of artifact left by the “PowerLessShell” tool in “Windows

Events”. As a result, for the post-exploitation phase, for red-teamers to hide their “Powershell” activity

against blue-teamers, they can rely on this where only the initial execution of their Powershell is

trackable and the rest will pass by undetected. To prove that we’ll use “Sherlok.ps1” powershell script

which is a scanner for kernel vulnerabilities for privilege escalation.

Figure 9 downloading and running the “Sherlok.ps1” script using Invoke-Expression cmdlet

We used “IEX” cmdlet to execute “sherlock.ps1” in memory by fetching its script code from the attacking

machine through a “Net.WebClient” object. In a case where this powershell command is executed directly

on the machine without the use of “PowerLessShell”, 2 events will be recorded in “Windows Events”, the

 10

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

first is the “IEX” command, and then the “Sherlok.ps1” script code, which is not the case when

“PowerLessShell” is used.

Figure 10: The output of the “Sherlok.ps1” script

Before we ran the “sherlock.ps1” script from “PowerLessShell”, we cleared the “Windows Events” logs to

limit events to what will be created after the execution of the commands and scripts within

“PowerLessShell” shell.

Figure 11: Windows Powershell event log is empty

As we can see in (Fig.11) and the figures after it, no windows events has been recorded after the

execution of “PowerLessShell”.

 11

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 12 Powershell (Admin) event log is empty

Figure 13 Powershell (Operational) event log is empty

No artifacts are recorded on the Windows Powershell, Powershell (Admin), nor Powershell (operational).

Looking also on the System events log, we can see that some logs were generated for the source “Service

Control Manager” but no direct event is available to indicate that a Powershell script ran or anything

related to Powershell.

Figure 14 System event log, show multiple entries, although none are related directly to running a Powershell instance

 12

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 15 WMI (Operational) event log, also has nothing related to Powershell

Looking at the “WMI Operational” Windows Events in our case has loaded some dll’s related to system

enumeration, due to the “Sherlok.ps1” script, but nothing related directly that a script under the name

“Sherlok.ps1” has ran on the system, nor any indication that these were the result of the execution of a

“Powershell” script. From this we can conclude, that “Powershell” Windows Events are successfully

omitted right after the execution of the “PowerLessShell” payload. However, any powershell activity that

results in the activation of none-powershell related events, will be recorded, but the source of those

activities can only be identified through an incident response approach where the timeline of events is

reviewed and tracked to the source files that were written or executed in the same time frame as the

suspicious none-powershell events.

We also analyzed the Windows “Amcache” which is a Windows registry file that stores information about

applications executed on the system. This file is highly important for digital forensics investigators as it

contains data such as the name of the application, path, sha1, execution date and more for each of the

executed applications. For the purpose of this research, the “amcache” is analyzed to look for traces and

evidence for the execution of “PowerLessShell”.

 13

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 16 The amcache entries on the effected system

We know that PowerLessShell uses MSBuild.exe to execute its payload but it changes its name, so in

the figure above it shows that the random letters is an executable on the same path as "MSBuild.exe”

which is a red flag. Another red flag is identifying the SHA1 hash for “MSBUILD” but under a different

name either under C:\Windows\Microsoft.NET\Framework\v4.0.30319\ or somewhere else, even

more suspicious if it is under a fake system process name such as “svchost.exe”. The following figure

shows “VirusTotal” results of the hash found under random characters in the “amcache”:

Figure 17 Virustotal result of the hash

“Virustotal” is website that scans executables with over 70 antivirus engines, which is used to search for

SHA1 hash of the executable with random letters, and we found that the executed application is actually

“MSBuild.exe” under a different name, so that’s an artifact that we can use to track executions of

“PowerLessShell”.

 14

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

6. Extra layer of obfuscation
For red-teamers to make the task harder on blue-teamers to detect the usage of “PowerLessShell” tool,

the tool has provided an extra option we’ll use to add an extra layer of obfuscation. When creating the

payload if we set the fifth choice as True, “PowerLessShell” tool will use a well-known process name such

as (svchost.exe, explorer.exe, …etc), and a well-known parameter related to the fake process to execute

“MSBUILD.EXE”.

Figure 18 we set “True” on the option of using a known process name renaming

The following “Powershell” windows events show the successful fake usage of the name of the process

“svchost.exe” for “msbuild.exe” with a fake parameter to hide it from praying eyes. However, we can see

that “PowerLessShell” does not successfully achieve that as the process name contains a spelling mistake

“svhost.exe” instead of “svchost.exe” which can be used to easily track executions of “PowerLessShell”.

 15

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 19: As shown in “HostApplication=” that “PowerLessShell” now uses a known process name for an extra layer of obfuscation

Blue-teamers know that this method is harder to detect, as they look at hundreds, maybe thousands, of

similar logs each day, so random values can drag the eye of a blue-teamer, but values like (svchost.exe,

explorer.exe.. etc) can be unintentionally skipped in the analysis phase. Nevertheless, some smart

detection techniques can be used to easily track such occurrences, for example “svchost.exe” should not

be the host application within Powershell Windows Events logs which is a red flag that is easy to detect.

Also, the file paths for each of the legitimate process names can be used to track fake instances using

similar names. More importantly for this case, having “svchost.exe” with the hash of “msbuild.exe” is a

clear indicator for the execution of “PowerLessShell”.

Comparing both when “PowerLessShell” is used with the option to use “msbuild.exe” under a fake random

name versus using it under the name of a legitimate process file name, the same 9 events will be

generated with the only difference is the process name in the parameter “HostApplication”.

 16

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

7. Detecting “PowerLessShell” Payload Execution Using Behavioral

Monitoring
To detect “PowerLessShell” tool, behavioral monitoring is the key either through capturing Sysmon

events and forwarding it to the SIEM solution and building a use-case around that, or through an

Endpoint Detection and Response system that supports creating behavioral monitoring rules.

The process tree of the “MSbuild” instance in this order is a “red flag” that should be reviewed by security

analysts:

Figure 20: The process tree of the normal “PowerLessShel”l instance (no obfuscation)

The figure above shows the process tree for the none obfuscated version of “PowerLessShell”, this

process tree will be similar either if you run the “.csproj” from the command-line, or if you double clicked

 17

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

the “.bat” file. The figure below is the process tree of the obfuscated version of the “PowerLessShell”,

similarly either you run the “.csproj” from the command-line, or double clicking the “.bat” file.

Figure 21: The process tree of the obfuscated version of “PowerLessShell” (the description indicates that this is an MSBuild.exe

instance)

 18

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

The following table contains a comparison between the process tree for the obfuscated version versus

the none-obfuscated one:

Version Process Tree

No obfuscation … cmd.exe

 … conhost.exe

 … adVkPMMZBOVCqPEsk.exe (The description column shows “msbuild.exe”)

Obfuscated … cmd.exe

 … conhost.exe

 … svchost.exe (The description column shows “msbuild.exe”)

Therefore, hunting for executions of “PowerLessShell” using behavioral monitoring would be by

searching for processes that contain “MSBuild” in the description filed where the process name of the

instance doesn’t equal “MSBuidl.exe” and the parent process is “cmd.exe”, so the rule can be created

logically as the following using common SIEM and EDR search annotations:

 (process_description ~”msbuild” && process_name !=”msbuild.exe” && parent_process == “cmd.exe”)

Symbol Meaning

!= Does not equal

== Equals

&& Logical and

~ Contains

 19

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

To sum things up, the following table contains a list of all artifacts left by the “PowerLessShell” tool that

can be used by blue-teamers and digital forensics investigators to detect its execution:

Log Source Artifacts

Windows Powershell Event

Logs

There will be 9 events related to the execution of the

“PowerLessShell” which are notable through the “HostApplication”

field which contains an executable name either with random

characters or with a system process name that shouldn’t be in

Powershell Windows events.

Amcache MSBuild.exe’s SHA1 hash

“e9762eccb59062a763bd621eb6e1d4d4faee74d8”, is found in

one of the amcache entries but with a different name than

MSBuild.exe, that could be random letters or other windows

common exe names such as (svchost, explorer, ..etc)

Process tree (no obfuscation) … cmd.exe

 … conhost.exe

 … adVkPMMZBOVCqPEsk.exe (The description column shows

“msbuild.exe”)

Process tree (obfuscated) … cmd.exe

 … conhost.exe

 … svchost.exe (The description column shows “msbuild.exe”)

Process monitor process_description ~”msbuild” && process_name !=”msbuild.exe”

&& parent_process == “cmd.exe”

File system Yara rule to detect the “.csproj” file created by “PowerLessShell”

tool. The rule is provided in the section below.

 20

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

File system Yara rule to detect the “.bat” file created by the “PowerLessShell”

tool. The rule is provided in the section below.

8. Yara and Sigma Rules to Detect “PowerLessShell”
Sigma is a Generic signature format for SIEM systems, on this github repository [2] you can find the

sigma tool and the usage of the tool. Use the following sigma rule to create a detection rule for your

selected SIEM solution to hunt for “PowerLessShell”:

title: PowerLessShell execution

description: Detects PowerLessShell execution activity by monitoring process creation EventID 1 with the msbuild.exe

process as OriginalFileName. The process in field commandline is the malicious program. the command line will have a

project with 5-25 of random letters.

references:

 - https://github.com/Mr-Un1k0d3r/PowerLessShell

status: stable

author: Haboob Team

date: 2020/11/16

logsource:

 product: windows

 service: sysmon

detection:

 selection:

 EventID: 1

 ParentImage: 'C:\Windows\System32\cmd.exe'

 OriginalFileName: 'msbuild.exe'

 selection2:

 EventID: 1

 ParentImage: 'C:\Windows\explorer.exe'

 21

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

 OriginalFileName: 'msbuild.exe'

 condition: selection or selection2

falsepositives:

 - Enviroments that use msbuild on a production service

level: high

Yara project [3], is a pattern matching tool for malware researchers to detect and classify malware

families. You can write yara rules and run them using yara binaries to detect malwares based on the

rules that contain pre-defined patterns. The following yara rules successfully detect “PowerLessShell”

payloads:

rule PowerLessShell_csproj {

 meta:

 description = "yara rule to detect PowerLessShell .csproj"

 author = "Haboob Team"

 date= "2020/11/16"

 strings:

 $s1= "C:\\Windows\\Microsoft.Net\\Framework\\v4.0.30319\\Microsoft.Build.Tasks.v4.0.dll" fullword

 $s2= "using System.Management.Automation.Runspaces;" nocase wide ascii

 $s3= "= new RunspaceInvoke(" wide ascii

 $s4= "RunspaceFactory.CreateRunspace()" fullword

 condition:

 all of them

}

rule PowerLessShell_bat {

 meta:

 description = "yara rule to detect PowerLessShell .bat"

 22

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

 author = "Haboob Team"

 date= "2020/11/16"

 strings:

 $s1 =

"7573696e672053797374656d2e4d616e6167656d656e742e4175746f6d6174696f6e2e52756e7370616365733b" wide ascii

 $s2 = "52756e7370616365466163746f72792e43726561746552756e73706163652829" wide ascii

 $s3 = "3d206e65772052756e7370616365496e766f6b6528" wide ascii

 condition:

 all of them

}

9. Conclusion
“PowerLessShell” is a post-exploitation tool that executes Powershell scripts without invoking a

Powershell instance. The tool has been explained in details with its several options and features.

Following that, we have explored several ways in which “PowerLessShell” can be hunted and detected

by blue teams using techniques such as monitoring process executions and using search rules to flag

malicious invocations of “msbuild.exe” Moreover, SIGMA and YARA rules were provided to extend

“PowerLessShell” detection capability into SIEM solutions and EDR systems.

 23

A Purple Team Study into “PowerLessShell” Tool

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

10. References

1. https://github.com/Mr-Un1k0d3r/PowerLessShell

2. https://github.com/Neo23x0/sigma

3. https://virustotal.github.io/yara/

4. https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-conditions?view=vs-2019

