Encrypted Linux x86-64 Loadable Kernel Modules
(ELKM)

cenobyte
vincitamorpatriae @ gmail.com
https://github.com/cenobyte-vincit/encrypted-linux-kernel-modules

Abstract—In this paper, we present ELKM, a Linux tool that
provides a mechanism to securely transport and load encrypted
Loadable Kernel Modules (LKM). The aim is to protect kernel-
based rootkits and implants against observation by Endpoint
Detection and Response (EDR) software and to neutralize the
effects of recovery by disk forensics tooling.

I. INTRODUCTION

For attackers, the proliferation of Linux EDR software that
record execvx () calls make the risk of getting detected more
substantial. Observable post-exploitation activity such as the
execution of insmod to load a rootkit on a Linux host will
undoubtedly catch the interest of security operations analysts
hunting for threats.

In addition, there is a considerable risk of keeping LKM
rootkits on the disks of compromised hosts. Rootkits need
to be persistent across reboots and, on virtual machines and
cloud instances it is not possible to achieve persistence through
backdooring UEFI or the BIOS. Disk snapshot facilities
provided by hypervisors and laaS cloud service providers
makes it trivial for adversaries to quickly and inconspicuously
make a copy of a disk and recover LKMs that reside on the
disk its filesystems. This risk is not only limited to virtual
machines and cloud instances, as disks of physical machines
can be easily imaged on the fly with dd, or offline using law
enforcement-specific disk imaging tooling.

Threat intelligence firms receive a continuous stream of
recovered artifacts from cyberattacks and while those firms
are typically not that well versed in attribution, they are quite
capable of analyzing these artifacts correctly. The challenge for
attackers is to keep rootkits on the systems they were deployed
on and to make forensics and reverse engineering as difficult
as possible.

II. ELKM

The core of ELKM is the fusing of an encrypted LKM
payload to an Executable and Linking Format [2] (ELF) shared
object, the ‘loader’. The loader decrypts the payload during
runtime, and subsequently inserts the decrypted LKM into
the kernel without invoking insmod. As a shared object, the
loader is able to hide from execution monitoring by inserting
itself in dynamically linked operating system executables that
are considered trusted.

ELKM supports two decryption modes:

o Auto-decrypt: the password is derived from the main-
board product UUID or the EC2 instance ID. In auto-
decryption deployments a dropper could send the kernel
version and product UUID or instance ID via a C2 chan-
nel to a staging environment. The staging environment
builds the rootkit for the target kernel version, and then
encrypts and fuses the payload to the loader. The dropper
would then be able to fetch the staged loader and install
it in an appropriate place on the host for persistence.

o Manual decryption: the password is provided via an
environment variable or stdin.

This approach makes the deployment of ELKM-
protected LKMs reasonably resilient against detection
by EDR software and disk forensics tooling.

Note: Memory dumps and forensics is evidently a concern
on virtual machines and cloud instances (such as Amazon
EC2 [1]), but this is not necessarily the case for physical
machines. The memory dump threat for attackers is outside
of the scope of this paper and ELKM.

III. LOADER

The ELKM loader is a 64-bit shared object. By inserting the
loader using the dynamic linker and LD_PRELOAD on trusted
executables such as systemd, crond etc. the loader can be
trivially hidden from EDR software. For instance, the Carbon
Black Cloud Enterprise EDR Linux sensor [3] appears to
only record execution arguments, and threat hunters inspecting
telemetry will not be able to see environment variables of
executed programs. To overtake the execution of a target
program the loader utilizes __ libc_start_main () [4]
which is a C library function that is called prior to the main ()
function.

During execution, the loader scans the value of
LD_PRELOAD to obtain its path and then calculates the
size of its ELF image to find the offset of the fused payload.
Utilizing memfd_create () it then creates a memory
file descriptor, starts decrypting the payload, and writes
the decrypted bytes to the memory file descriptor. After
successfully decrypting the payload in memory the next
step is to load the LKM image into the kernel by using the
finit_module () syscall. The finit_module () syscall
reads the LKM image from the memory file descriptor and
loads it accordingly.

A. Size and offset of the payload in the loader binary

The loader obtains the size and offset of the payload by
reading its ELF64 [S] header. The ELF64 header structure
(Fig. 1) is located at the beginning of the loader binary and is
obtained using pread64 () [6].

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf64 Half e_type;
El1f64 Half e machine;
Elf64 Word e version;
Elf64 Addr e entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
E1f64_ Word e_flags;
E1f64_Half e _ehsize;
E1f64_ Half e_phentsize;
E1f64 Half e phnum;
Elf64 Half e_shentsize;
El1f64 Half e shnum;
E1f64 Half e shstrndx;

} E1f64 Ehdr;

Fig. 1. EIf64 Ehdr

There are 3 elements of interest in the ELF header related
to the ELF section header:

e e_shentsize: Holds the size of the section header’s
entry in bytes, all section header entries are the same size.

e e_shnum: Holds the number of section header entries in
the section header table.

e e_shoff: Holds the byte offset from the beginning of
the binary to the section header table.

The product of e_shentsize and e_shnum gives the
section header table’s size. The sum of the section header table
size and e_shoff gives the exact size of the loader ELF
image. The payload size is calculated by subtracting the ELF
image size from the size of the loader binary.

B. Cryptography

The cryptographic component of ELKM is provided by
OpenSSL, and it uses the Advanced Encryption Standard
(AES) [7] cipher algorithm in Cipher Block Chaining (CBC)
[8] mode. A 256-bit key is set, and an 8-byte crypto-
graphically strong pseudo-random salt is generated with the
RAND_bytes () [9] function. The EVP_BytesToKey ()
[10] function is used to derive the key and initialization vector
(IV), and 10,000 iterations of the SHA-512 [11] hashing
algorithm are applied to help protect against brute force
attacks.

C. ELKM Payload fuser

ELKM comes with payloadfuser that encrypts an
LKM, generates the payload, and fuses it to the ELKM loader.
The resulting payload consists of two parts: the 8-byte salt and
the ciphertext. The fused loader binary can be seen in Fig. 2.

ELF header

/ 4

Program header table |7 wchin:

Section 1
Loader

ELF
image B e_phoff
Section n

e i e_shoff

Section header table

phen

Loader
binary

N

8-byte salt

e_phnum

— e_shentsize

ki e_shnum

Encrypted i hs
payload Encrypted LKM
ciphertext

o N

Fig. 2. Fused loader binary overview

D. Decryption password

Four methods to obtain a valid decryption password are
executed in sequence:

e Product UUID: x86-64 Mainboards should have a
manufacturer-assigned product Universally Unique Iden-
tifier (UUID) [12]. The product UUID is a unique 128-
bit integer and its format is described in RFC4122
[13]. On Linux the product UUID can be obtained
from /sys/class/dmi/id/product_uuid. The
encrypted LKM can be tied to a specific host using
the product UUID, and the loader will be able to auto-
decrypt itself when executed on the right host. In case
/sys/class/dmi/id/product_uuid doesn’t ex-
ist, or the product UUID isn’t the password, the loader
will continue to check if the host is an EC2 instance.

o EC2 instance ID: If the host runs on Amazon EC2
then the Instance Metadata Service [15] is queried
to obtain the instance ID [16]. This is consid-
ered one of the lesser secure options since the in-
stance ID consists of a 2-character i— header, and a
17-character lowercase alphanumeric combination, e.g.
1-1234567890abcdef0. If the host is not an EC2
instance, or if the instance ID is not the password, the
loader will try scanning the environment next.

o Environment variable: The loader will use the first
environment variable that has been set by leveraging
glibc’s non-POSIX envp [14] which is a list of all the
environment variables that are passed as the environment
of the target program. If the password is set in an
environment variable other than the first environment
variable, the loader will not be able to decrypt and will
fall back to the last decryption option.

o Standard input: Interactive, which may be used post-
exploitation.

IV. PROTECTIONS

The ELKM loader comes with two basic protection mech-
anisms:

It sets the core dump size to O to prevent the password
from ending up in a core dump if the loader happens to
terminate unexpectedly.

It ptraces itself to prevent debuggers from attaching after
a successful environment or interactive decrypt.

FUTURE WORK AND IMPROVEMENTS

Separate the loader ELF logic from the decryption logic
to make it possible for a dropper to load encrypted LKMs
over the network.

The ability to tie a LKM to a single system and ask for an
additional password, utilizing Cascading Multiple Block
Algorithms.

Introduce ARM and x86 support.

Support for RHEL/CentOS 8 and Amazon Linux.

ACKNOWLEDGMENT

Thank you Fionn F for your review and the inspiration for
writing ELKM.

[1]

[2]
[3]
[4]

[5]
[6]

[7]
[8]
[9]
[10]
(11]
[12]

[13]
[14]

[15]

[16]

REFERENCES

https://docs.aws.amazon.com/AW SEC2/latest/ APIReference/API_
SendDiagnosticInterrupt.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://www.carbonblack.com/blog/carbon-black-cloud-adds-linux-support-for-enterprise-edr/
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/
LSB-Core- generic/baselib---libc-start-main-.html
https://refspecs.linuxfoundation.org/elf/gabid+/ch4.eheader.html
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core- generic/
LSB-Core- generic/baselib-pread64.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https:/nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38a.pdf
https://www.openssl.org/docs/man1.0.2/man3/RAND_bytes.html
https://www.openssl.org/docs/man1.0.2/man3/EVP_BytesToKey.html
https://mvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_
3.0.0.pdf

https://tools.ietf.org/html/rfc4122
https://www.gnu.org/software/libc/manual/html_node/

Program- Arguments.html

https://docs.aws.amazon.com/AW SEC2/latest/UserGuide/
ec2-instance-metadata.html

https://docs.aws.amazon.com/AW SEC2/latest/UserGuide/resource-ids.
html

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_SendDiagnosticInterrupt.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_SendDiagnosticInterrupt.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://www.carbonblack.com/blog/carbon-black-cloud-adds-linux-support-for-enterprise-edr/
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/baselib---libc-start-main-.html
https://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/baselib---libc-start-main-.html
https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib-pread64.html
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib-pread64.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.openssl.org/docs/man1.0.2/man3/RAND_bytes.html
https://www.openssl.org/docs/man1.0.2/man3/EVP_BytesToKey.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.0.0.pdf
https://tools.ietf.org/html/rfc4122
https://www.gnu.org/software/libc/manual/html_node/Program-Arguments.html
https://www.gnu.org/software/libc/manual/html_node/Program-Arguments.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resource-ids.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resource-ids.html

	Introduction
	ELKM
	Loader
	Size and offset of the payload in the loader binary
	Cryptography
	ELKM Payload fuser
	Decryption password

	Protections
	References

