
API Security Overview

Sun* Cyber Security Research Team

Table of Content

1. Why Do You Need API Security Testing?
2. API Security Top 10 OWASP

1.Why Do You Need API Security Testing?

API security breaches

- In September of 2018, hackers used a vulnerability in Facebook’s
Developer API to expose millions of users

-
- In 2019, A computer science student has scraped seven million

Venmo transactions to prove that users’ public activity can still be
easily obtained

-
- In 2019, Starbucks Devs Leave API Key in GitHub Public Repo
- API allows data exchange between applications. If a hacker breaches

API security, he/she can access sensitive data stored on your
website.

-
- Data leaks of customers. This data is then sold in the black market.
- Defacement to your website & business. It can severely affect your &

your brand’s reputation in the market.

2. API Security Top 10

1. Broken Object Level Authorization
2. Broken User Authentication
3. Excessive Data Exposure
4. Lack of Resources & Rate Limiting
5. Broken Function Level Authorization
6. Mass Assignment
7. Security Misconfiguration
8. Injection
9. Improper Assets Management

10. Insufficient Logging & Monitoring

Threat
Agents

Exploitabil
ity

Weakness
Prevalence

Weakness
Detectability

Technical
Impacts

Business
Impacts

API
Specific

Easy: 3 Widespread 3 Easy 3 Severe 3 Business
Specific

API
Specific

Average: 2 Comon 2 Average 2 Moderate
2

Business
Specific

API
Specific

Difficult: 1 Difficult 1 Difficult 1 Minor 1 Business
Specific

2.1 Broken Object Level Authorization

- OLA is an access control mechanism that is implemented at the code
level to validate that one user can only access objects that they
should have access to.

-
- API receives an ID of an object, and performs any type of action on

the object, should implement object level authorization checks. The
checks should validate that the logged-in user does have access to
perform the requested action on the requested object.

-
- Leading to unauthorized information disclosure, modification, or

destruction of all data

Threat agents/Attack
vectors (3)

Security Weakness (2) Impacts (3)

Attackers can exploit API
endpoints by manipulating the
ID of an object that is sent
within the request

Access control detection is
not typically amenable to
automated static or dynamic
testing

- Data disclosure to
unauthorized parties,
data loss, or data
manipulation
- Full account
takeover

2.2 Broken User Authentication

- Permits credential stuffing whereby the attacker has valid usernames
and passwords.

-
- Permits attackers to perform a brute force attack on the same user

account, without presenting captcha/account lockout mechanism.
- Permits weak passwords.
-
- Sends sensitive authentication details (auth tokens and passwords)

in the URL.
- Doesn’t validate the authenticity of tokens.
-
- Accepts unsigned/weakly signed JWT tokens ("alg":"none")/doesn’t

validate their expiration date.
- Uses plain text, non-encrypted, or weakly hashed passwords.
-
- Uses weak encryption keys.

Threat agents/Attack
vectors (3)

Security Weakness
(2)

Impacts (3)

Engineer misconceptions
about what are the boundaries
of authentication and how to
implement it correctly

- Lack of protection
mechanisms
- Misimplementation of the
mechanism

Attacker gains control to
other users’ accounts in
the system, read their
personal data, and
perform sensitive actions
on their behalf

2.3 Excessive data exposure

- The API returns sensitive data to the client by design. This data is
usually filtered on the client side before being presented to the user.
An attacker can easily sniff the traffic and see the sensitive data.

Threat agents/Attack
vectors (3)

Security Weakness (2) Impacts (2)

Usually performed by sniffing the
traffic to analyze the API
responses, looking for sensitive
data exposure that should not be
returned to the user

- APIs are used as data
sources, developers
implements them in a generic
way without thinking about
the sensitivity of the exposed
data
- Automatic tools usually
can’t detect this type of
vulnerability

Excessive Data
Exposure
commonly leads
to exposure of
sensitive data

2.4 Lack of Resources & Rate Limiting

- No authentication is required. Multiple concurrent requests can be
performed from a single local computer or by using cloud computing
resources.

Threat agents/Attack
vectors (2)

Security Weakness
(3)

Impacts (2)

Engineer misconceptions about
what are the boundaries of
authentication and how to
implement it correctly

- APIs that do not
implement rate limiting or
APIs where limits are not
properly set

Exploitation may lead
to DoS, making the
API unresponsive or
even unavailable.

2.5 Broken Function Level Authorization

Perform deep analysis of the authorization mechanism:

- Can a regular user access administrative endpoints?
-
- Can a user perform sensitive actions (e.g., creation, modification, or

erasure) that they should not have access to by simply changing the
HTTP method (e.g., from GET to DELETE)?

-
- Can a user from group X access a function that should be exposed

only to users from group Y, by simply guessing the endpoint URL and
parameters (e.g., /api/v1/users/export_all)?

Threat agents/Attack
vectors (3)

Security Weakness (2) Impacts (2)

- API exposed to anonymous
users or regular, non-privileged
users.

- Easier to discover in APIs are
more structured, and the way to
access certain functions is more
predictable

- Implementing proper
checks can be a confusing
task, since modern
applications can contain
many types of roles or
groups (e.g., sub-users,
users with more than one
role

Attackers access
unauthorized
functionality.
Administrative
functions are key
targets for this type of
attack.

2.6 Mass Assignment

- Objects in modern applications might contain many properties. Some
of these properties should be updated directly by the client (e.g.,
user.first_name or user.address) and some of them should not (e.g.,
user.is_vip flag)

-
- API endpoint is vulnerable if it automatically converts client

parameters into internal object properties, without considering the
sensitivity and the exposure level of these properties

-
- Permission-related properties: user.is_admin should only be set

by admins.
- Process-dependent properties: user.cash should only be set

internally after payment verification.
- Internal properties: article.created_time should only be set

internally by the application
-
-

-

Threat agents/Attack
vectors (2)

Security Weakness (2) Impacts (2)

- Requires an understanding of
the business logic, objects'
relations, and the API structure.

- Expose the underlying
implementation of the application
along with the properties’ names.

- Modern frameworks use
functions that automatically
bind input from the client into
code variables and internal
objects

- Attackers use it to update or
overwrite sensitive object’s
properties that the developers
never intended to expose

Exploitation may
lead to privilege
escalation, data
tampering, bypass
of security
mechanisms, and
more.

2.7 Security Misconfiguration

- Appropriate security hardening is missing across any part of the
application stack, or if it has improperly configured permissions on
cloud services.

- The latest security patches are missing, or the systems are out of
date.

- Unnecessary features are enabled (e.g., HTTP verbs).
- Transport Layer Security (TLS) is missing.
- Security directives are not sent to clients (e.g., Security Headers).
- A Cross-Origin Resource Sharing (CORS) policy is missing or

improperly set.
- Error messages include stack traces, or other sensitive information is

exposed

Threat agents/Attack
vectors (3)

Security Weakness
(3)

Impacts (2)

- Attackers will often attempt to
find unpatched flaws, common
endpoints, or unprotected files
and directories to gain
unauthorized access or
knowledge of the system.

- Automated tools are
available to detect and
exploit misconfigurations
such as unnecessary
services or legacy options.

Security
misconfigurations can
not only expose sensitive
user data, but also
system details that may
lead to full server
compromise.

2.8 Injection

- Client-supplied data is not validated, filtered, or sanitized by the API.
- Client-supplied data is directly used or concatenated to
-
- SQL/NoSQL/LDAP queries, OS commands, XML parsers, and Object

Relational Mapping (ORM)/Object Document Mapper (ODM)
-
- Data coming from external systems (e.g., integrated systems) is not

validated, filtered, or sanitized by the API

Threat agents/Attack
vectors (3)

Security Weakness (3) Impacts (3)

- Attack API with malicious data
through whatever injection vectors
are available (e.g., direct input,
parameters, integrated services,
etc.), expecting it to be sent to an
interpreter.

- Injection flaws are very
common and are often found
in SQL, LDAP, or NoSQL
queries, OS commands,
XML parsers, and ORM.

- Review source code or
scanner

Injection can lead
to information
disclosure and
data loss. It may
also lead to
DoS,or complete
host takeover.

2.9 Improper Assets Management

- The purpose of an API host is unclear
- There is no documentation, or the existing documentation is not

updated.
-
- There is no retirement plan for each API version.
- Hosts inventory is missing or outdated.
-
- Integrated services inventory, either first- or third-party, is missing or

outdated.
- Old or previous API versions are running unpatched

Threat agents/Attack
vectors (3)

Security Weakness (2) Impacts (2)

- Old API versions are usually
unpatched and are an easy way
to compromise systems.

- Outdated documentation
makes it more difficult to find
and/or fix vulnerabilities.

- Lack of assets inventory and
retire strategies leads to
running unpatched systems

Gain access to
sensitive data, or
even takeover
the server
through old,
unpatched API
versions
connected to the
same​ ​database

2.10 Insufficient Logging & Monitoring

- It does not produce any logs, the logging level is not set correctly, or
log messages do not include enough detail.

-
- Log integrity is not guaranteed (e.g., Log Injection).
- Logs are not continuously monitored.
-
- API infrastructure is not continuously monitored.
-

Threat agents/Attack
vectors (2)

Security Weakness (1) Impacts (2)

- Attackers take advantage of
lack of logging and monitoring to
abuse systems without being
noticed.

- It is almost impossible to
track suspicious activities and
respond to them in a timely
fashion

Without visibility
over on-going
malicious
activities,
attackers have
plenty of time to
fully compromise
systems

