
Apache
Ghostcat
CVE 2020-1938

www.safe.security V.19.02.01.01

SAFE SECURITY | 2020

2© Copyright of Safe Security 2020

Table of
Contents

1. What is Tomcat?

○ What are Tomcat connectors

○ HTTP connectors:

○ AJP connectors:

2. What can Ghostcat do?

3. Mitigations:

4. Exploitation:

○ Attack Scenario

○ Scanning

○ Reading Sensitive Files

○ Using the gathered information

5. Becoming Root

1

2

3

4

5

6

7

8

8

9

10

14

3

Apache Ghostcat

© Copyright of Safe Security 2020

What is Tomcat?

Apache Tomcat is a widely used, open-source Java servlet

container for implementing many of the Java Enterprise

specifications, such as:

1. Java Servlet

2. JavaServer Pages,

3. Java Expression Language,

4. Java WebSockets.

Tomcat was first released in 1998. It started as a reference

implementation for the first Java Servlet API and the JSP spec.

While it's no longer the reference implementation for either of

these technologies, Tomcat remains the most widely used Java

server, boasting a well-tested and proven core engine with good

extensibility.

What are Tomcat connectors
Connector elements are Tomcat's links to the outside world, allowing Catalina to receive requests, pass them to

the correct web application, and send back the results through the Connector as dynamically generated content.

By default, Tomcat is configured with two Connectors, which are HTTP Connector and AJP Connector:

● HTTP Connector: used to process HTTP protocol requests (HTTP/1.1), and the default listening address is

8080.

● AJP Connector: used to process AJP protocol requests (AJP/1.3), and the default listening address is

8009.

The CVE 2020-1938 takes advantage of Tomcat’s AJP connector, which helps the attacker read sensitive

information from web apps and even more critical action if file uploads are allowed on the web application.

4

Apache Ghostcat

© Copyright of Safe Security 2020

AJP connectors:
AJP Connectors work in the same way as HTTP Connectors, but they use the AJP

protocol in place of HTTP. Apache JServ Protocol, or AJP, is an optimized binary

version of HTTP that is typically used to allow Tomcat to communicate with an

Apache webserver.

This functionality is typically required in a high-traffic production situation, where

Tomcat clusters are being run behind an Apache webserver.

This allows the Apache server to deliver static content and proxy requests to

balance request loads effectively across the network and let the Tomcat servers

focus on providing dynamic content.

Ghostcat is a severe vulnerability in Tomcat discovered by security researcher of

Chaitin Tech. Due to a flaw in the Tomcat AJP protocol, an attacker can read or

include any files in Tomcat’s web app directories.

For example, An attacker can read the web app configuration files or source code.

Besides, if the target web application has a file upload function, the attacker may

execute malicious code on the target host by exploiting file inclusion through

Ghostcat vulnerability.

This vulnerability affects all versions of Tomcat in the default configuration, which

means that it has been dormant in Tomcat for more than a decade.

What is Tomcat?

HTTP connectors:
This Connector element, which supports the HTTP/1.1 protocol,

represents a single Connector component listening to a specific

TCP port on a given Server for connections.

5

Apache Ghostcat

© Copyright of Safe Security 2020

What can Ghostcat do?

By exploiting the Ghostcat vulnerability, an attacker can read the configuration files’ contents and source code

files of all web apps deployed on Tomcat.

Besides, suppose the website application allows users to upload files. In that case, an attacker can first upload a

file containing malicious JSP script code to the server and then include the uploaded file by exploiting the

Ghostcat vulnerability, which finally can result in remote code execution.

Versions of the Tomcat are affected

If the AJP Connector is enabled and the attacker can access the AJP Connector service port, there is a risk of

being exploited by the Ghostcat vulnerability.

9.x < 9.0.31 8.x < 8.5.51 7.x < 7.0.100 6.x

6© Copyright of Safe Security 2020

Apache Ghostcat

Mitigations:

1.
If the AJP Connector service is not used, users can upgrade Tomcat to version 9.0.31, 8.5.51, or 7.0.100 for patching the

vulnerability.

If users can’t upgrade, they can choose to disable the AJP Connector directly or change its listening address to the

localhost.

Steps:

A. Edit the file <CATALINA_BASE>/conf/server.xml and find the following line:

<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

B. Now comment it out or delete it:

<!--<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />-->

C. Save the edit, and then restart Tomcat.

2
 If the AJP Connector service is in use, users are recommended to upgrade Tomcat to version 9.0.31, 8.5.51, or 7.0.100,

and then configure the “secret” attribute for the AJP Connector to set AJP protocol authentication credentials.

For example:

<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" address="YOUR_TOMCAT_IP_ADDRESS"

secret="YOUR_TOMCAT_AJP_SECRET" />

Key Notes:

● What is Ghostcat: Helps read any files on the web app

● CVSS V3 Score: 9.8

● Impact: Critical: Disclosure of sensitive information

● How exploit works: Look for an AJP connector on port 8009 and using it to access files that have sensitive

information.

7© Copyright of Safe Security 2020

Apache Ghostcat

Exploitation:

Attack Scenario
We will be looking at a scenario with a target machine running a vulnerable apache tomcat version, having

two users. In this scenario, we will retrieve the first user’s ssh key and access the system using the Ghostcat

exploit. Then we will escalate our privileges by retrieving the key for the second user and later becoming

the root using the vulnerability further found.

For this practical we will need:

1. A target machine with a vulnerable tomcat version installed

2. A Kali Linux machine to scan and exploit the vulnerability

The target machine for this paper is at 10.10.44.150. We will first start scanning the IP address for open ports and

services running on it and analyze vulnerable service, which is tomcat.

Scanning

8© Copyright of Safe Security 2020

Apache Ghostcat

After scanning the address, we found that the vulnerable apache tomcat version runs on port 8080, so let’s
check it by browsing the address on a browser.

Exploitation:

9© Copyright of Safe Security 2020

Apache Ghostcat

Reading Sensitive Files

Now that we know that our target is vulnerable to this vulnerability, we will find exploitation. We will
use a simple tool named ajpshooter to read the XML file containing a user’s ssh key on the target
machine.

Once you install the tool, you will need to run the following command:
python3 ajpshooter.py http://10.10.44.150:8080 8009 /WEB-INF/web.xml read

This command will help us read the web.xml file containing the ssh key and our first user’s user name
in the target machine.

Exploitation:

10© Copyright of Safe Security 2020

Apache Ghostcat

Now we will log in using ssh credentials we found in the web.xml using the command:

ssh username@address

After logging in to the first user account, we now found a gpg file that needs to be decrypted using a passphrase

from the other file. So let’s get these files to our machine using the scp command.

scp username@address:/path/to/files .

Using the gathered information

Exploitation:

11© Copyright of Safe Security 2020

Apache Ghostcat

Now that we have the required files on our host machine, we will use the gpg2john tool to create a hash from the

asc file.

gpg2john filename.asc > hash

We will now have a hash file.

Exploitation:

Now we will use the john the ripper tool to crack the hash using the command

john --wordlist=rockyou.txt hash

(I used the command earlier so the key result was saved and to view the cracked hashed in john the ripper use john

--show hash)

12© Copyright of Safe Security 2020

Apache Ghostcat

So now we have the passphrase to decrypt our gpg file. We will first import the gpg key and then decrypt it.

First, use the command and enter the passphrase:

gpg --import ./filename.asc

Then we will use:

gpg --decrypt credfile.gpg

Exploitation:

13© Copyright of Safe Security 2020

Apache Ghostcat

Now we have found the second user name and user credentials to access the target machine. From here, we

will use ssh to login and then escalate the privileges to become root.

Exploitation:

14© Copyright of Safe Security 2020

Apache Ghostcat

After trying to check for sudo privileges, the second user did not have the permissions and hence we will need to

find another way. So we found that the second user does have non-password zip permissions and a simple

command can help us gain root access from here.

So let's enter a command:

sudo /usr/bin/zip mktemp -u /tmp -T -TT ‘sh #’

So we finally have the root access of our target machine, which we were able to compromise due to a

critical vulnerability known as Apache Tomcat CVE 2020-1938.

Becoming Root

Exploitation:

www.safe.security | info@safe.security | +91 11 2632-2632
SAFE SECURITY 2020

