
www.safe.security

URL Exploiting
XXE to SSRF

Research Paper

V.19.02.01.01

SAFE SECURITY | 2020

2SAFE SECURITY 2020

Table of
Contents

1. Introduction to XML

2. What are external entities, and how it’s used

3. Taking a look at XXE VUlnerability using a simple example

4. Understanding SSRF vulnerability

5. A simple example of how SSRF works

6. Using XXE to exploit SSRF vulnerability in a Web application

4 - 5

6

7-8

9

10-13

14-17

3SAFE SECURITY 2020

We will learn how we can use XXE vulnerability to

perform an SSRF attack. For this, we will cover the

required areas and look into demonstration:

Introduction to XML

What are external entities, and how it’s

used?

Taking a look at XXE with a simple

example

Understanding SSRF vulnerability

A simple example of how SSRF works

Using XXE to exploit SSRF vulnerability

in a Web application

1

2

3

4

5

6

4SAFE SECURITY 2020

So how can we use this XML data? XML does not tell us

how it will be presented, and the stored data can be

shown in any way by our application. Hence XML helps in

completely separating the data from the presentation.

In general the XML documents have a definite structure:

<root>

<child>

<subchild>.........</subchild>

</child>

</root>

The document can have only one root element. Also, each

tag needs to be closed with a supporting closing tag. The

tags are case sensitive, that is, <name> and <Name> tags

are different.

XML stands for eXtensible Markup Language much

like HTML. It’s used to store and transport data and

was designed to be self-explanatory.

“Self-explanatory” can be understood from an

example code which stores some information:

<?xml version="1.0" encoding="UTF-8"?>

<Person>

<Name>Xyz</Name>

<Age>22</Age>

</Person>

Here we are storing a person’s information with his

Name and Age. But how will we use this information?

The code does not do anything in its current form, but

URLwe has to make another code or software to use

this information wrapped in tags for using it.

The XML tags are not pre-defined, which means that

the author of the XML document invents the tag

names just like in the case above. We have the

Person, Name, and Age tags that are not pre-defined

in XML standards but are made by the code

developer.

Introduction to XML
1

5SAFE SECURITY 2020

Again from the first code example,

<?xml version="1.0" encoding="UTF-8"?>: The first line is the prolog, defining the

version and character encoding to avoid errors due to international characters like

Norwegian or French.

<Person>: Root Tag

<Name> and <Age>: Child Tags

Next, we need to take a look at Entities in XML. Entities are simple storage units in

XML, just like variables used to assign values throughout the document.

Also, these entities are found in DTD, Document Type Definition. Syntax to create

an entity is:

<!ENTITY entity-name "entity-value">

An example of creating an entity in XML and using it:

<?xml version="1.0" encoding="UTF-8"?>

<! DOCTYPE Person [

<! ENTITY name “Xyz” >

]>

<Person>

<Name>&name;</Name>

<Age>22</Age>

</Person>

We can see that we have updated the previous example. We now used DTD

and created an Entity inside it as “name,” which stores the person’s name and

used it later in the document.

6SAFE SECURITY 2020

Now that we know how to make an entity and use

it in the document, let’s create an external entity

used in the XXE exploit.

Using the SYSTEM keyword, we can create an

external entity. This keyword tells the parser that

the entity is of the external type, telling it to fetch

the external resource and store it in the external

entity.

But entities can not only store values but local or

remote files and hence can be taken advantage

of by a hacker. Lets take an example of how to

create an external entity:

<?xml version="1.0" encoding="UTF-8"?>

<! DOCTYPE Pwn [

<! ENTITY external SYSTEM “secret.txt” >

]>

<Pwn>&external;</Pwn>

 What are external entities, and how it’s used

The secret.txt file can be a secret local file

present on your server that should not be

accessible. But using an external entity, we can

get the secret file and view the content on a

vulnerable web application. Hence XML eXternal

Entity Vulnerability.

2

7SAFE SECURITY 2020

XXE is a vulnerability where we take advantage of the

XML Parser and get our bad data executed. From bad

data, we mean the malicious external entity we create

and use in an XML document.

Sometimes XML Parsers refer to an external entity that

allows an attacker to enter a payload in place of the

external entity and execute it using the XML Parser.

XXE can disclose local files in the file system of the

website. A famous example of this vulnerability exploit

is the Billion Laughs attack.

An example of XXE to fetch passwd file from the

system:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Person [

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>

<Person>

<Name>&xxe;</Name>

<Age>22</Age>

</Person>

We can look at the implementation of XXE on a test

application. This application allows us to enter an XML

code and execute it using the XML parser and get the

output. On entering the sample code, we can see the

output:

<Person>

<Name>Xyz</Name>

</Person>

Taking a look at XXE Vulnerability using a simple example
3

8SAFE SECURITY 2020

We can create an external entity that will fetch the passwd file from the server and present us the data. For this

we will enter:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Person [

 <!ENTITY xxe SYSTEM "/etc/passwd" >

]>

<Person>

<Name>&xxe;</Name>

</Person>

9SAFE SECURITY 2020

In the logs of the target server, the first logs were

generated by the attacker. But as the attacker found a

vulnerable web application with SSRF, he started

sending a request from the vulnerable machine to the

target machine. The attacker's IP is now hidden.

The target parameters for this attack are uri, URL URL,

file, dist, redirect, etc. If a web application is taking user

input in a parameter in the form:

www.abc.com/?file=page1, then an attacker can

simply replace the value with a target remote domain

like www.abc.com/?file=http://victim.com/

Now in the log files of victim.com, the IP address

sending the request will be abc.com. And now the

attacker can check for open ports, their version, initiate

a DOS attack, or find files with sensitive information.

Server Side Request Forgery is a web

application vulnerability allowing an attacker to

send an HTTP request to an arbitrary domain.

The advantage of this vulnerability is that the

victim server’s logs will not contain the

attacker’s IP address but the vulnerable web

application server’s IP address sending the

request from the attacker’s side.

This can happen when the vulnerable web

application server requests external domains

for users through its parameters taking external

URLs.

We can understand this from the diagram:

ATTACKER

TARGET
SERVER

VULNERABLE
SERVER

Server LogIP = 10.9.1.105

IP= 192.168.1.104

abc.com/contactus :ip=192.168.1.104

abc.com/index.php :ip=192.168.1.104

abc.com:21/index.php :ip=10.9.1.105

Understanding SSRF vulnerability
4

10SAFE SECURITY 2020

 A simple example of how SSRF works

We can use a test web application to check for

SSRF vulnerability. But the challenge is we do not

have a secondary domain to check the logs if

containing the vulnerable server’s IP address.

First, let’s check our IP address using an online

service. Go to

https://www.expressvpn.com/what-is-my-ip

Here we will get our IP. But what if the vulnerable

web application sends a request to this domain.

The domain will give the IP address of the

vulnerable web application server.

We will use Burp Suite to spider the vulnerable

web application and find a parameter that will

send our request to an external domain.

5

11SAFE SECURITY 2020

12SAFE SECURITY 2020

Now we can select any of the requests with the “file” parameter and send it to the repeater tab

Now we can try replacing the parameter value with the URL we used before to find our IP address.

13SAFE SECURITY 2020

From the response, it’s clear that the request was successful. Check the response we found that the
IP address was different from our IP address.

This means that the web application is vulnerable to SSRF, and if we send any request to the
remote domain from here, the attacker’s IP will be hidden.

Now that we know how XXE and SSRF work, we can use them together and exploit SSRF from XXE.

14SAFE SECURITY 2020

Using XXE to exploit SSRF vulnerability in a Web application

We will use a test application that checks for the number of products left in stock. The application is vulnerable

to both XXE and SSRF, and to exploit SSRF, we will take advantage of XXE vulnerability.

We can capture the request in Burp Suite. The request sent is handled using XML, and the product id helps us

find the stock value.

6

15SAFE SECURITY 2020

So we will send this request to the repeater and check if altering the product id reflects in the
response and then start creating an external entity.

As the change in value is now visible, we can create an external entity and fetch a local file like a
password file.
For this, we added a line:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>
Now we used the “xxe” external entity at the place of product id and checked for the response.

.

16SAFE SECURITY 2020

Now that the value is visible, we can perform SSRF from the same product id parameter by creating
an external entity that requests a target domain. The domain is at http://169.254.169.254/, and we
will again use the same steps but replace the local file with the target URL and check for a
response.

We can see that we got an error and received a file name “latest” in the response. Let’s use this file
name in our given URL and send the request again.

17SAFE SECURITY 2020

We again received a path. Let's keep adding the file names till we find some information of our
interest.

We finally reached the admin page with all the sensitive information. In this way, we could send
requests from vulnerable web application servers to the target server and perform SSRF using the
XXE vulnerability.

www.safe.security | info@safe.security | +91 11 2632-2632
SAFE SECURITY 2020

