
My neighbor’s flat smells like data

Gerard Fuguet (gerard@fuguet.cat)

Abstract

Electromagnetic waves are present in any part of the space that humans are involved to.
They are apparently invisible to our eyes, we can’t feel the sense of their presence
without the correct tool for decodify them, but… even with it, is still impossible the
reading of the content that hides us, because they are “embarrassing” and do not want
to show themselves to anyone. Wi-Fi waves are similar to the microwave waves.
Microwave can reveal their aspect with the help of its smell. Wi-Fi has the ability to be
almost unseeable to others with encryption protocols, helping it a good camouflage.
Also has the option to spread confidential data “to the four winds” when the
communication channel is established as OPEN (and doesn’t matter if it’s produced in a
short period of time). The processes that we focus on this white paper is to capture
confidential data on the fly of a smart switch (IoT) device.

We will demonstrate how to get easily the Wi-Fi’s name (SSID) and password of the
owner’s device although the password and encryption are very secure/strong. This
situation motivated me to write it.

The intention is that vendors be aware and take action against this. We want to
demonstrate the danger of open wireless to the consumers with a theory and practical
approach view (simple as possible).

1

mailto:gerard@fuguet.cat

Table of Contents

1. Motivation...3

2. SmartLife...4

2.1. The Smart Wi-Fi Wall Switch...4

2.1.1. Set it UP..4

3. Bridging the Data..8

3.1. Machine-in-the-Middle...9

3.1.1. Catching the Data..10

3.1.2. Windows too...20

4. Cybercriminal is in the Air..28

5. Conclusions...30

6. References...33

2

1. Motivation
Free wireless networks have always been very tentative for those who want internet
connection in a place that don’t carry it. A tourist is a typical profile that looks for it
when travels to a country with a non-data coverage plan. People living in Europe (for
example), between the EU countries, there is no extra charge with their mobile operator
[1], so it could reduce the needs to have a non-owned Wi-Fi (free or not, secure or not).
Nowadays there are alternatives to avoid the use of external Wi-Fi’s; buying a prepaid
data plan, use an achieve roaming plan, ...

There is a strong Cyber consciousness and is increasing with the pass of the years but,
seems is not enough because most vendors, who should help setting a good example,
make serious mistakes in security IT terms. Connecting to a wireless that is not yours, is
not a recommendation even if is secure or not (you are not the manager of that
legitimate Wi-Fi and you don’t know what is moving in background) but what is
happen if the device establish a temporarily free Wi-Fi for the first setup? Need to
connect to a Wi-Fi network, and OK if this network is belonging to us but it’s OPEN,
that’s the problem and this paper is being written due to this. You also could say if the
config takes some small time, is difficult intercept important owners data, right?

Figure 1: At left; part of the initial setup of Meross app showing the Wi-Fi schema. At right; the
AP created by app with no padlock (means it is OPEN)

In the above figure, app does not tell the Wi-Fi to connect is OPEN (no security) but
you can be aware doing the inspection with the scan functionality of the smartphone
itself, in this example, through an Android device.

I want to explain a realistic case to try to stop the way of these type of configurations.

3

2. SmartLife
The “smart” word appears and is adding in conventional devices expanding the options
to turn on and off (not limited too) from many sources not only by physical human
interaction. Typical home appliances are made to be part of our lives with a clear
mission, help in our tasks and reduce the time of home maintenance to invert this time
in other things we like more. Remote control concept was very useful to control TV
channels because if not, every time need the effort to get up to change looking for a
desirable channel. The TV remote control is still present as TV screen concept but you
also can do the same control with your phone (with some app). The distance in that case
is imposed by your network not by the infrared ray emitted, so you don’t need reside at
front for swap between TV channels. The use of a smartphone to do this is very similar
because, the phone is near to you like the remote controller, phone can be the first
choice and the controller the backup in case of a fault.

Home automation was not as plug-and-play at the beginning, some additional elements
were necessary. In nowadays, this is more easy because the infrastructure is almost in
any home, you need not more than a Wi-Fi point of access with Internet connection. But
let’s the focus on the smart wall switch light part.

2.1. The Smart Wi-Fi Wall Switch
You know how is the behavior of a normal light wall switch, it have a simple
mechanism to accomplish their function and can’t ask it for more. Sometimes simple is
better because, as less sophistication, less problems/troubles/headaches. The design is
very closed so, any ad-don/new functionality, could also be hard to implement. What if
we are interest in apply a scheduler to turn on and turn off light in some specific time?
Is an amazing thing and useful if we are at outsides to convince thieves (as an example)
we “could be at inside” but the installation turn into a great challenge for someone who
has never been in contact with the electricity world. On the contrary, the smart light
switch can do your life easier, this is one of the great advantage, can do the same with a
pair of (basically) things, your smartphone and have an Internet connection available -a
piece of cake, right?-.

2.1.1. Set it UP
The requirements of the installation of this particular Meross device are clear and well
defined. You will need:

1. An account (free, of course!)

2. An SmartPhone (Android or iOS, doesn’t matter!)

3. Internet connection (comes with your home gateway!)

4. Have a neutral wire on your electrical installation (what & why?)

For the last point 4. the reason is because this new device have electronic inside and
needs to be powered, so the electrical circuit needs to be close by a positive (+) and a
negative (-) or in terms of electricity, live (+) and neutral (-). Keep in mind, without the

4

success of this point nº 4. the other before points are useless. A basic knowledge is
needed, but don’t worry, if you want test this PoC, you are under good hands! ;) .

Is almost impossible do the best tutorial that feed all of all to everyone homes… each
case could be very different, most important is understand the things and you will
always win.

- As step 1, need locate the old switch to replace. What if more than one switch controls
the behavior of the light? In this situation, you are dealing with a 2-way switch (and you
will need to use the same product as mine, an MSS550X EU/UK version [2]). If you
have two of 2-way, you will need to replace one (not both!) and if you have three vs one
light, need take care not use the cross switch for be replacing. Let’s explain the
following electrical schematic:

Figure 2: At top; a schema with two switches against one light. At bottom; same schema
concept plus a cross switch

In the case of the two 2-way switches (top schema), there are 2 cables interconnected
between them, this is because if one of them is clicked, light toggles status (if ON then
OFF, if OFF then ON). For this reason, only one of them need to be replaced.

In the case of two 2-way and one cross (or more!) switch exist in your home to control
same light, you can still replace one of the 2-way switch, but not the cross switch. This
scenario can handle more than one cross switch if you have more than three switches.
The formula, (having 3 switches as minimum) to calculate it is: nº of switches – 2 (for
example, if you need 6 switches in total, 4 cross switches will needed).

- Step 2: Once identified the traditional 2-way replaceable switch, you need find the
neutral cable in a near fuse box but before, remember to turn off the general power
electricity! And pass the cable with a help of a tool to push-pull it.

5

Figure 3: A type of fuse box on a Spanish home

The cables colors usually are; blue for neutral, brown/black/grey for live/phase [3].
Generally, between 2-way and/or cross switches the preferred colors are grey or black.

When neutral cable is passed to the switch box, rest of the cables are used to be
connected to the smart switch.

Figure 4: Taking advantage of the previous cables plus neutral

The connection on MSS550X is as follows; Grey cables to the L1 and L2, brown to C
and blue to N.

- Step 3: This is the software part (tested under version 2.26.2). Download the Meross
app [4] [5] and sign up with a valid email address (if you want recover the password if it
someday missing ;)).

6

Figure 5: Meross app: Sign up process under Android version

Choose a different password (for security reasons) for the email that will be used as
your Meross account, and you will have the privilege to add Meross devices.

Figure 6: Meross app: Adding a device under Android version

Tap the plus button and search for the Smart 2 Way Wall Switch.

At this point, you will receive some instructions on how to install it at hardware part,
but you are at software, so sure you did it! You can skip it to gain some time until you

7

reach the part of the Wi-Fi connection that you saw in figure 1, then next figure will
continue to guide you:

Figure 7: Meross app: Rename, customize device and join Wi-Fi under Android version

Almost done! You can now rename it, Customize Your Icon (not mandatory) and find
your home Wi-Fi network including the correct password in order to show “some light”
to the device that is looking for an exit to Internet. If all goes well, you will be
congratulated by app. That was easy right? The light now turn on & off magically
through the app. Having a smartphone nowadays is very important if you want to enjoy
the IoT world!

3. Bridging the Data
Set UP is complete but at this point you are asking ¿How it works at network level?
¿What are their interactions between app and the smart wall switch? The answer is to
use “something-in-the-middle” tactic in order to sniff data pass-through.

There are many methods to get success with it (each has its advantages and
disadvantages), one affordable for inspect into mobiles is the use of a proxy [6], but it
requires some set up in your smartphone and sometimes can’t be implemented as a
global proxy for catching all packets… for this reason, I prefer something more
transparent with “0-config” on involved actors and ensuring nothing is lost in the way.
Machine-in-the-middle, as explained in Wireshark Wiki’s [7], is another concept similar
to Man-in-the-Middle (MitM) that basically consist in converting your machine into a
network switch, so can leading the layer 2.

The disadvantage is the configuration you need in machine and the additional hardware
(depending on the medium the devices uses). You may need an additional Ethernet NIC

8

if in both around devices has this medium but, in this case, all is through Wi-Fi
(smartphone and the smart wall switch).

3.1. Machine-in-the-Middle
Let’s see how to achieve the implementation under Kali Linux.

As explained before, all the transmission is through Wi-Fi, it means we will need that 1
network NIC act as Access Point and other act as client/station mode.

Before to explain the methodology, is important to know that you cannot use Wi-Fi
interface in client/station mode for build the bridge because it hasn’t the 4-address
format into the 802.11 frames [8] so... How can we use other Wi-Fi acting as client
under this limitation? Using a device with these capabilities connected to the Ethernet,
in my case, using a Gargoyle router (specifically, a gateway model WZR-HP-G300NH2
and software version 1.12.0), an OpenWRT based system [9].

In figure 1 of the chapter 1, we saw that MSS550X creates an AP (HotSpot). The idea is
to know what is moving between smartphone (using the official Meross app) and the
smart wall switch. When the HotSpot disappears, the Meross device connects to the Wi-
Fi that we told via app, this conversation won’t be covered in this paper but we will
offer it the option of going online for have a “happy ending” (complete the joining
process successfully).

To make things easier and for prepare the scenario better, let’s do a checklist for all
needed elements we need to implement in the solution:

- SmartPhone: Connects to the controlled Hacker’s Laptop (SSID named ColdSpot)

- Hacker’s Laptop: Machine-in-the-Middle

Bridge: br0 {eth0 & wlan0}, wlan0 acting as AP, eth0 acting as Wi-Fi client through
Gargoyle router

SSID: ColdSpot

- Gargoyle Router: Acting as Wi-Fi client

Bridge Management IP: 192.168.3.1

- Meross device:

SSID: Meross_SW_XXXX

(for the moment, we don’t know the IP, network…)

9

- Home Router/Gateway: Brings Internet to Meross device

IP: 192.168.1.1

Network: 192.168.1.0/24

DHCP: ON

SSID: MildPot

Now let’s draw a diagram to have a good shot of all devices:

Figure 8: Machine-in-the-Middle scenario

Hey! Why is here a Cybercriminal object? Well… There can always be one stalking us
sniffing over the air!

The yellow waves are the traffic involved between smartphone and MSS550X. The blue
ones are traffic between Meross and gateway that happens when the set up is complete
(not sniffed). The first device to interact is the smartphone that instead of doing the
connection against the Meross SSID, it will connect to the hacker’s SSID and packets
are forward to the network of Meross through the Wi-Fi client established by the
Gargoyle. Responses will occur in the reverse order using the same infrastructure.

Moving now into the practical mode.

3.1.1. Catching the Data
The Machine-in-the-Middle infrastructure is clear now according to figure 8, we need
configure to get it working in a Kali. Let’s do it step by step:

0. If MSS550X is already set up, remove it from the app (you will need Internet access)
so that you can configure it again for sniffing.

10

Figure 9: Removing the device on app under Android version

The account (and credentials) will remains, you don’t need a log out or clear the app
cache, remember that our objective is to catch the data between the mobile phone
(Meross app) and the smart switch.

Prepare Gargoyle router; before powering on your computer, connect the Ethernet cable
to it and turn on the Gargoyle.

Step 1: PoC under...

1. Reviewing the OS version where PoC is running. Invoke first the “super user”.

Figure 10: Kali – Elevate user and showing the OS version

Step 2: Preparing Machine-in-the-Middle environment

1. Get connected to Internet to refresh the Kali repositories for obtain later the hostapd
[10] package.

11

Figure 11: Kali – Update repositories

2. Install the hostapd package with the help of apt-get command so can bring up a
HotSpot.

Figure 12: Kali – Installing hostapd

Step 3: Creating hostapd.conf

1. Hostapd needs minimal stipulated guidelines into a config file, then it will knows
what is the name of the SSID, the working channel, encryption type and password for
this AP (will be used later).

Figure 13: Kali – creating hostapd.conf via vi editor

12

Step 4: Discovering Network Parameters

1. Using the GUI, connect to the Meross Wi-Fi so know what is their IP.

Figure 14: Kali – Connecting to the Meross Wi-Fi

Step 5: Our Gateway is their IP

1. Using route tools reveals our gateway (or gateways if we are connected to other
networks), and also it tells us the IP of MSS550X.

Figure 15: Kali – Route command to show gateway/s

2. Once the parameter is got, Wi-Fi can be disconnected.

Step 6: Tell Gargoyle (OpenWRT based System) to act as Wi-Fi client for connecting to
the Meross Network

1. Internet connection is received through the Gargoyle configured as Wi-Fi client
against our gateway router (we preferred to take advantage of the Ethernet port to have
Internet connection). As can be seen in 3.1, the bridge IP is configured as 192.168.3.1, it
uses relayd [11], a second virtual IP of the network to extend is assigned. If you don’t
remember or for to be sure it works through this mechanism, a traceroute can be done
against the Internet gateway to be determined (not mandatory, of course).

13

Figure 16: Kali – Determining the Gargoyle’s IP and opening web for config

2. We use hostname instead of IP and new tab was opened with CTRL+SHIFT+T
because of execution of firefox.

3. Once a login to the web page is successful, the Gargoyle device needs to be
configured as Wireless Bridge/Repeater and it’s time to put the Meross IP following the
steps of next figure.

Figure 17: Gargoyle – Set UP the client Wi-Fi mode

14

4. When changes are saved, close firefox or kill process on terminal (CTRL+C).

Step 7: Disable IPv4 and IPv6 all interfaces via Network Manager for transparency
(GUI mode)

1. Click to the network icon at top – right near the time, to editing the both network
connections.

Figure 18: Kali – Editing network connections through GUI

2. Double click to edit the Wired connection 1 and disable IPv4 & IPv6 protocols. Do
the same for the Wi-Fi.

Figure 19: Kali – Disabling IPv4 & IPV6 protocols under Network Manager

3. Again, click to the network icon at top – right near the time to disable and repeat
operation to enable (the network will be rebooted).

15

Figure 20: Kali – Rebooting network using Network Manager

Step 8: Avoid conflicts stopping Network Manager

1. Using hostapd and Network Manager can conflict if both are up & running [12].
Network Manager must be stopped in order to use the HotSpot functionality with other
different software and avoid errors/problems.

Figure 21: Kali – Stopping Network Manager service

Step 9: Execute now your HotSpot

1. Is the moment to execute hostapd tool with their config file we created before
(hostapd.conf) so will brings up an AP with our desired parameters.

Figure 22: Kali – Executing hostapd with the config file

Step 10: Let's create the Bridge

1. In a new tab on terminal and under root user, eth0 and wlan0 will be part of new
interface called br0 (the bridge). Follow the next commands using iproute2 [13] to
create the bridge.

16

Figure 23: Kali – Creating a bridge using iproute2

Step 11: Checking the just created Bridge

1. Before moving forward, need to know if the bridge is stable and support some “heavy
weight”. After issue the following command, if you can see forwarding on both
interfaces, the bridge is working well.

Figure 24: Kali – Checking the state of the bridge

Step 12: Time to Monitoring :)

1. Mounting a bridge without sniffing it is useless, so start Wireshark to intercept one of
the interfaces. You don’t need monitor on both, all traffic that goes from phone to
Meross and reversal is passing for both interfaces, so monitoring in one of them is
enough (in this case we select eth0).

17

Figure 25: Kali – Starting Wireshark

2. Is the turn to the smartphone. Replicate the steps from figure 6 of the chapter 2.1.1.
and onwards, then Wireshark will have something to digest :D !

At completion of the MSS550X set up, packets appears… Of all of them, the ones that
catch our attention, are those of them that have the HTTP protocol. It appears to be json
requests, subtrees are expanded to do a better inspection.

Figure 26: Wireshark – json requests in HTTP protocol

3. Looking for the last POST request method. A right click hit over JavaScript Object
Notation will show the window which include Expand Subtrees option. The json in their
format takes this form:

18

Figure 27: json request structure taken from the capture

4. What?! What our eyes are seeing? The password of our home gateway wireless is
here? The “ssid” not seems to be ours… so what’s going wrong? We can deduce ssid
parameter is coded under Base64 because the equal sign gives it away. Do you want to
decode it quickly, offline and in a GUI mode? Wireshark can help you! A right click
onto the incomprehensible string and...

Figure 28: Wireshark – Decoding strings as Base64

This is a very bad idea… It uses an OPEN (non encrypted) Wi-Fi over an “almost” plain
content? Yes, anyone sniffing at surroundings can easily get your Wi-Fi credentials. The crook's
creativity may be endless.

19

3.1.2. Windows too
Windows can support a Machine-in-the-Middle setting creating a bridge between an
Ethernet & Wi-Fi interfaces but not in the same way than Kali Linux does. Roles in
interfaces change; The Wi-Fi will act as client and Ethernet act as HotSpot because
"layer 2 bridging is prohibited between the AP adapter and any other adapters in the
system" [14].

0. This PoC was tested under a version of Windows 10 32-bit and a 32-bit 3.4.4 of
Wireshark.

Figure 29: Wireshark – About screen showing their version + Windows

For bridge data capture to work, you need to use WinPcap instead of Npcap [15] to let
physical ports be captured (forwarding/transit traffic).

Step 1: Installing the old and unsupported WinPcap

1. The official site still exists, you can download it and install on your Windows 10.
Follow the easy next-next wizard.

20

Figure 30: Downloading WinPcap

Step 2: Installing Wireshark without Npcap

1. In Wizard, be sure the checkbox Install Npcap… is unchecked and continue the
installation as normal.

Figure 31: Wireshark – Install process maintaining WinPcap

Step 3: Prepare the HotSpot on Ethernet side

1. The role of the Gargoyle router is to behave like a gateway, the default config with
the enabled AP.

21

Figure 32: Gargoyle – Configure as gateway & set AP

2. And the DHCP is OFF, so IP address should be taken from Meross smart device.

Figure 33: Gargoyle – Turn OFF DHCP

22

Step 4: Setting the Wi-Fi client on wireless interface

1. Simply, connect to the OPEN MSS550X Wi-Fi network. (there is no password, and is
easy to identify, check the icon around available wireless!).

Figure 34: Windows 10 – Wi-Fi network management

Windows here does a good job alerting with a warning sign in the Wi-Fi network chosen
and with some description (here is in Spanish) saying: “Other people might be able to
see info you send over this network”…

Step 5: Create the network Windows Bridge

1. In Network connections, select the 2 interfaces (Wi-Fi & Ethernet) – right click over
the Wi-Fi Network – Bridge Connections.

Note: Very important right clicking over Wi-Fi (not over the Ethernet one), this will be
the NIC node that will lead you with the Meross network, this will determine the success
of the bridge creation.

23

Figure 35: Windows 10 – Bridge creation with 2 interfaces

As troubleshooting, sometimes the bridge network can fail in their creation, an error
message appears (here is in Spanish) saying: “An unexpected error occurred while
configuring the Network Bridge”. In order to solve it, try to choose the NIC that
couldn’t be joined to the bridge (the Ethernet). Before doing that, wait until the bridge is
showing the SSID (means the direction of the connection is going well). Right click and
check if the window option says “Remove from Bridge” or “Add to Bridge”, the last is
telling network adapter is not in bridge so choosing “Add to Bridge” will do the trick.
(in Spanish is “Agregar al puente”) any error shouldn't be appear.

24

Figure 36: Windows 10 – Troubleshooting when Bridge fails

If all goes well, you will see the Bridge interface with the SSID name of Meross
(Meross_SW_XXXX).

Step 6: Ready to run Wireshark

1. Run Wireshark as usual and choose one of the physical interfaces, in this example
Ethernet was selected (do a double click on interface and capture will start).

Figure 37: Wireshark – Start a capture on physical interface

2. Connect to the SSID network that will enter to the bridge scenario instead of connect
to the real Meross Wi-Fi (Meross_SW_XXXX). We named it ColdSpot.

25

3. Smartphone gets an IP address from DHCP as usual but… maybe IP is the same as
the bridge, why? This behavior is depend of how DHCP server is managing the leases.
Maybe the bridge and/or Meross DHCP device service is getting same MAC coming
from the bridge. It receives certain requests and chooses by default those of a specific
correlation and possibly believes that it always comes from the same MAC address…
Don’t worry, we have a solution for this. Set a static IP, look at the IP config of the
bridge, put the following IP address on your smartphone (next available, if 2 put the end
as 3, you can put other until 254, but let's be true to the queue) and packets will flow
fluently.

26

Figure 38: Wireshark & Android – Top; IP bridge info. Bottom; Set static IP

4. You know what to do here, but no problem to remind you! Remove device seen in
figure 9 of chapter 3.1.1. and repeat steps from figure 6 of the chapter 2.1.1. and so on,
same type of data will be captured (HTTP/JSON).

27

4. Cybercriminal is in the Air
Wi-Fi networks are in the air and they can take very wide directions. If you can read in
many places like in your own OS that open Wi-Fi are not so good because traffic on
them can be spied (like seen in Windows 10 in figure 34) is for some good reason…

We want to show you a realistic tested situation about a hacker that made a bridge for
testing their device (Kali Linux case, chapter 3.1.1.) that feeds at same time to a
cybercriminal who is listening and filtering for a Meross_SW_ SSID for malicious
purposes.

Let’s explain the easy steps for the malicious person.

0. A few requirements: A version of Kali. A wireless interface (if is laptop, can be the
embedded one or use an external to be more “able to hear”).

Step 1: Putting the wireless interface into monitoring mode

1. Wi-Fi NIC needs entering into monitor mode to be able to capture data but before it,
some wireless client process/es must be killed to avoid disruption. The airmon-ng also
can help in this task.

2. Then, for starting with the default interface (if there is only one) can be started with
same tool.

Figure 39: Kali – Enabling monitor mode with airmon-ng

The new interface called wlan0mon will be created and, it will be used for the following
command/tool.

Step 2: Filtering the SSID by Meross_SW_

1. Is well known, these devices has their SSID starting by the same prefix and seems
operates on channel 1. Airodump-ng tool can do this type of filtering.

28

Figure 40: Kali – Filtering by SSID with airodump-ng

The option for filter the SSID is: --essid-regex and capture is being recorded to the file
called meross-01.cap (-w is for tell to save current capture to a file and, it add prefix -01
if there is only one file named meross). Note that, the client with MAC starting with
B0:C7:45 (the Gargoyle) is who’s generating data.

Step 3: Let’s see the collected data

1. Simply invoke Wireshark from terminal pointing the meross file.

Figure 41: Wireshark – Inspecting 802.11 air data

This is a copy of the data observed in Wireshark of the figure 26 of chapter 3.1.1. but
with some little differences in OSI layer, like the IEEE 802.11 for example.

Someone you don't trust can take your Wi-Fi credentials!

Looking other example to understand it? See this video:

https://www.youtube.com/watch?v=pMzULxYDsNM

29

https://www.youtube.com/watch?v=pMzULxYDsNM

5. Conclusions
We have done a real simulation involving two roles:

- Role as pentester: The hacker is usually a curious person at IT level, always wanting to
know how a newly acquired device works. The task employed was information
gathering, hearing the device conversation by putting itself in the middle (seen from
chapter 3.1. to 3.1.1.).

- Role as cybercriminal: The malicious person is always looking for take profit at the
expense of others, trying hacking tactics (seen in chapter 4.).

In this short but deep story, the cybercriminal, using their social engineering, knows that
their neighbor (the hacker) has a smart device which knows how it works because saw
an interesting article on Internet [16]. That article not points to the same device like
hacker has, but thinks that if it's from the same manufacturer it might work the same
way, so the impatient person, suddenly becomes patient and turn on sniffer on their
super Wi-Fi antenna in order to catch something in the air.

Is this enough to understand the danger that can create the open wireless weapon? You
may try at night, at very late hours to perform the pairing to complete the set up if you
think is only solution to avoid the problem. Cybercriminal could sleep but their weapon
not! Time to think the possible solutions, because not only a user can suffer a security
breach with normal use (without using Machine-in-the-Middle) even hacker was pwned
in their own testings!

Let’s study what Meross app saw under both Machine-in-the-Middle scenario (Kali
Linux & Windows respectively).

30

Figure 42: Fing – Network overview seen from MSS550X. At top; scenario of Kali. At bottom;
scenario of Windows 10

Using Fing [17] (available as mobile app), we inspection MAC addresses of the SSID,
gateway (smart wall switch) and a traceroute to the device IP to see the jumps until the
MSS550X.

In both cases, the MAC of the SSID (BSSID) and of the smart device is not the one that
belongs to it, and do not forget, that in both scenario, app accept and recognize the
MSS550X completing their set up successfully. Neither the name of the SSID is equal at
the beginning characters, but app accept it. What seems to be equal? At level/layer 3,
the IP address of the end node/device, that is 10.10.10.1.

31

The big faults under my point of view are:

- The non verification of some processes at network level.

and

- The use of non encrypted transmit channel.

If app would do a correct verify, it would not allow be sniffing by Machine-in-the-
Middle method. But this won’t solve the problem of revealing the clear data through the
air…

Let’s put in a list some security measures ordered from more important to less:

1. Use of encryption on Wi-Fi HotSpot created in smart device: Doing that, the
malicious outsiders will see the air data in invisible mode.

2. Encryption of the content of user/SSID & password: If Wi-Fi fails encrypting all their
traffic, at least, do the most confidential part of the content like the password of the
SSID owner,… Maybe using HTTPS instead of simple and plain HTTP will be a good
idea, or use both. Here is only a protection by Base64 algorithm.

3. Check the MAC address by OUI: App may do a MAC check by their first 3
hexadecimal pairs and, if it’s not related to Meross, thrown an error and stop
communication. If this were so, these PoC’s, both Windows & Kali would fail at
sniffing.

4. SSID checking, channel Wi-Fi checking and type of security: The verification of the
first words of the SSID, in conjunction with the channel data is running and type of
security may be a good point to robustness it.

5. Allow only 1 IP lease on DHCP pool: The DHCP service of the smart wall switch
device, may can be accept 1 IP address to give to a device. If more than 1 exists, drop
connection for this secondary attempt. In both scenario, will fail because 2 IP are
needed to flow data into the bridge.

6. Don’t allow more than 1 hop on a traceroute check: App can do a verification doing
a traceroute, if there is more than 1 hop, drop communication. As we see in figure 42,
will get success under Windows 10.

The only verification app does is the gateway IP, the IP of MSS550X. We believe that if
it met the first point, it would have enough protection to not to be sniffed in the air. But
not forget, if only first point is maintained, device is sensible to Machine-in-the-Middle
attacks, for a very good security, covering all points could be more than great (No sniff,
No MitM attacks).

We tried to write this white paper in clear mode to understand the problematic this
situation is and the danger could be producing. In nowadays there is some automatism

32

in lot o tasks, other are using as good purposes, but some of them, can be used to slowly
hurt you without you noticing. Sometimes it is too late, sometimes it leaves
consequences, take care of yourself and of the health of your IoT's, and educate them
like a child.

Remember…

Be Good, Be Hackers.

6. References
[1] Roaming: Using a mobile phone in the EU - Your Europe.
https://europa.eu/youreurope/citizens/consumers/internet-telecoms/mobile-roaming-
costs/index_en.htm

[2] Meross: Simple Device, Simplify Your Life.
https://www.meross.com/Detail/67/Smart%20Wi-Fi%202%20Way%20Wall%20Switch

[3] IEC 60446 - Wikipedia. https://en.wikipedia.org/wiki/IEC_60446

[4] meross - Apps on Google Play. https://play.google.com/store/apps/details?
id=com.meross.meross&hl=en&gl=US

[5] Meross on the App Store. https://apps.apple.com/app/meross/id1260842951

[6] Configuring an Android Device to Work With Burp - PortSwigger.
https://portswigger.net/support/configuring-an-android-device-to-work-with-burp

[7] CaptureSetup/Ethernet - The Wireshark Wiki.
https://wiki.wireshark.org/CaptureSetup/Ethernet#Capture_using_a_machine-in-the-
middle

[8] linux - Bridging wlan0 to eth0 - Server Fault.
https://serverfault.com/questions/152363/bridging-wlan0-to-eth0

[9] Gargoyle Router Management Utility. https://www.gargoyle-router.com

[10] hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
Authenticator. http://w1.fi/hostapd

[11] bridge_repeater [Gargoyle Wiki].
https://www.gargoyle-router.com/wiki/doku.php?id=bridge_repeater

[12] How do I prevent Network Manager from controlling an interface? | CDRouter
Suppor. https://support.qacafe.com/knowledge-base/how-do-i-prevent-network-
manager-from-controlling-an-interface

[13] networking:iproute2 [Wiki]. https://wiki.linuxfoundation.org/networking/iproute2

33

https://wiki.linuxfoundation.org/networking/iproute2
https://support.qacafe.com/knowledge-base/how-do-i-prevent-network-manager-from-controlling-an-interface
https://support.qacafe.com/knowledge-base/how-do-i-prevent-network-manager-from-controlling-an-interface
https://www.gargoyle-router.com/wiki/doku.php?id=bridge_repeater
http://w1.fi/hostapd
https://www.gargoyle-router.com/
https://serverfault.com/questions/152363/bridging-wlan0-to-eth0
https://wiki.wireshark.org/CaptureSetup/Ethernet#Capture_using_a_machine-in-the-middle
https://wiki.wireshark.org/CaptureSetup/Ethernet#Capture_using_a_machine-in-the-middle
https://portswigger.net/support/configuring-an-android-device-to-work-with-burp
https://apps.apple.com/app/meross/id1260842951
https://play.google.com/store/apps/details?id=com.meross.meross&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.meross.meross&hl=en&gl=US
https://en.wikipedia.org/wiki/IEC_60446
https://www.meross.com/Detail/67/Smart%20Wi-Fi%202%20Way%20Wall%20Switch
https://europa.eu/youreurope/citizens/consumers/internet-telecoms/mobile-roaming-costs/index_en.htm
https://europa.eu/youreurope/citizens/consumers/internet-telecoms/mobile-roaming-costs/index_en.htm

[14] About the Wireless Hosted Network - Win32 apps | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/win32/nativewifi/about-the-wireless-hosted-
network

[15] Wireshark Q&A - Capturing problem Man-in-the-middle ethernet bridge windows
10. https://osqa-ask.wireshark.org/questions/62555/capturing-problem-man-in-the-
middle-ethernet-bridge-windows-10

[16] Device pairing · albertogeniola/MerossIot Wiki · GitHub.
https://github.com/albertogeniola/MerossIot/wiki/Device-pairing

[17] Fing - IoT device intelligence for the connected world | Fing. https://www.fing.com

34

https://www.fing.com/
https://github.com/albertogeniola/MerossIot/wiki/Device-pairing
https://osqa-ask.wireshark.org/questions/62555/capturing-problem-man-in-the-middle-ethernet-bridge-windows-10
https://osqa-ask.wireshark.org/questions/62555/capturing-problem-man-in-the-middle-ethernet-bridge-windows-10
https://docs.microsoft.com/en-us/windows/win32/nativewifi/about-the-wireless-hosted-network
https://docs.microsoft.com/en-us/windows/win32/nativewifi/about-the-wireless-hosted-network

	1. Motivation
	2. SmartLife
	2.1. The Smart Wi-Fi Wall Switch
	2.1.1. Set it UP

	3. Bridging the Data
	3.1. Machine-in-the-Middle
	3.1.1. Catching the Data
	3.1.2. Windows too

	4. Cybercriminal is in the Air
	5. Conclusions
	6. References

